South Fork Hoppers Creek - Melton Farm Stream Restoration Project Year 5 Monitoring Report

McDowell County, North Carolina

NCDMS Project Number – 92251

Project Info:	Monitoring Year: 5 of 5 Year of Data Collection: 2016 Year of Completed Construction: 2011 NCDMS Project Manager: Matthew Reid Submission Date: January 10, 2017
Submitted To:	NCDEQ – Division of Mitigation Services 1625 Mail Service Center Raleigh, NC 27699 NCDEQ Contract ID No. 004518

FINAL

South Fork Hoppers Creek - Melton Farm Stream Restoration Project Year 5 Monitoring Report

McDowell County, North Carolina

Report Prepared and Submitted by Michael Baker Engineering, Inc. NC Professional Engineering License # F-1048

Michael Baker

INTERNATIONAL

Michael Baker Engineering, Inc. 9716-B Rea Road #56 Charlotte, NC 28277

Kristi Suggs Project Manager

Jacob Byers, PE NC Ecosystem Services Manager

Table of Contents

1.0	EXECUTIVE SUMMARY	1
2.0	METHODOLOGY	4
2.1	Stream Assessment	.4
	2.1.1 Morphologic Parameters and Channel Stability	4
	2.1.2 Hydrology	5
	2.1.3 Photographic Documentation of Site	5
	2.1.4 Visual Stream Morphological Stability Assessment	6
2.2	Vegetation Assessment	.6
2.3	Wetland Assessment	.6
3.0	REFERENCES	8

Appendices

Appendix	Α	Project	Vicinity	Map and Background Tables
		Figure	1	Vicinity Map and Directions
		Table	1	Project Components
		Table	2	Project Activity and Reporting History
		Table	3	Project Contacts Table
		Table	4	Project Attribute Table
Appendix	В	Visual A	ssessme	ent Data
		Technica	al Mem	orandum – Site Assessment Report
		Figure	2	Current Condition Plan View (CCPV)
		Tables	5a-d	Visual Stream Morphology Stability Assessment Table
		Table	5e	Stream Problem Areas (SPAs)
		Tables	6a-b	Vegetation Condition Assessment Table
		Table	6c	Vegetation Problem Areas (VPAs)
		Stream S	Station	Photos
		Stream I	Problem	Area Photos
		Vegetati	on Prot	lem Area Photos
Appendix	С	Vegetati	on Plot	Data
		Table	7	Vegetation Plot Criteria Attainment
		Table	8	CVS Vegetation Plot Metadata
		Table	9	CVS Stem Count Total and Planted by Plot and Species
		Vegetati	on Plot	Photos
Appendix	D	Stream S	Survey I	Data
		Figure	3	Cross-sections with Annual Overlays
		Figure	4	Longitudinal Profiles with Annual Overlays
		Figure	5	Riffle Pebble Count Size Class Distribution with Annual Overlays
		Table	10	Baseline Stream Data Summary Tables

Appendices

		Table Table	11a 11b	Cross-section Morphology Data Table Stream Reach Morphology Data Table
Appendix	Е	Hydrolog	gic Dat	a
		Table	12	Verification of Bankfull Events
		Figure	6	Monthly Rainfall Data
		Figures	7	Precipitation and Water Level Plots
		Table	13	Wetland Gauge Attainment Data
		Bankfull	Photo	Documentation

1.0 EXECUTIVE SUMMARY

The Hoppers Creek - Melton Farm Restoration Project (Project) was restored by Michael Baker Engineering, Inc. (Baker) through an on-call design and construction services contract with the North Carolina Division of Mitigation Services (NCDMS). This report documents and presents Year 5 monitoring data as required during the five-year monitoring period.

The specific goals for the Project were as follows:

- Create geomorphically stable conditions on the Project site,
- Improve and restore hydrologic connections between the streams and their floodplains,
- Improve water quality in the South Fork Hoppers Creek watershed,
- Protect the South Fork Hoppers Creek watershed from nearby rapid development,
- Restore wetlands along South Fork Hoppers Creek in the Project area, and
- Improve aquatic and terrestrial habitat along the Project corridor.

To accomplish these goals the following objectives were implemented:

- Stabilize eroding channel banks by implementing a combination of Priority I Restoration and Enhancement II approaches,
- Increase floodplain connectivity to restore historic floodplain wetlands,
- Incorporate bedform diversity with varied in-stream structures to provide a variety of aquatic habitats,
- Reestablish a riparian buffer with native vegetation to improve terrestrial habitat and eliminate excessive sedimentation from erosion,
- Restore and enhance existing floodplain wetlands, where feasible, and
- Eliminate livestock access to the channel to improve water quality and reduce erosion from hoof shear.

The Project site is located approximately 10 miles southeast of Marion in McDowell County, North Carolina, as shown in Figure 1 in Appendix A. The Project is situated in the Catawba River Basin, within the United States Geologic Survey (USGS) hydrologic unit 03050101040-020. Directions to the Project site can be found in Figure 1 of Appendix A.

South Fork Hoppers Creek lies within the Piedmont physiographic province. Its watershed is predominately forested, supporting some isolated rural residential housing, chicken farms, agricultural lands, nurseries, and several small rural residential developments. The land surrounding the Project site has been used historically for agriculture but was recently used as pasture land for livestock grazing. Some forest land is located in the upstream extents of UT1, UT2, and UT3.

South Fork Hoppers Creek and its tributaries had been impacted by livestock, were incised, and eroded. Channel incision along South Fork Hoppers Creek resulted in the lowering of the water table; thereby, dewatering floodplain wetlands. The Project involved the restoration or enhancement of 3,550 linear feet (LF) of stream along South Fork Hoppers Creek, and portions of UT1 and UT2 using Rosgen Priority I restoration and Level II enhancement approaches. An additional 1,071 LF of stream along portions of UT1 and UT3 was placed in preservation. The Project also included the restoration and enhancement of 1.56 acres of riparian wetland abutting South Fork Hoppers Creek and UT1 of which 1.23 acres comprised restoration and 0.33 acres comprised enhancement. The Priority I channel design approach entailed raising the elevation of the channel to establish greater connectivity to the floodplain and to restore the hydrologic relationship between South Fork

Hoppers Creek, its tributaries and riparian wetland areas in the Project area. Channel pattern was re-established to dissipate flow velocities in meander bends. In-stream habitat was created using riffle-pool sequences and the strategic placement of in-stream structures. Approximately 5.7 acres of associated riparian buffer were restored/enhanced throughout the Project area and a conservation easement consisting of 10.1 acres will protect and preserve all stream reaches, wetland areas, and riparian buffers in perpetuity.

Vegetation conditions for South Fork Hoppers Reaches 1 and 2, and UT1Reach B, and UT2 Reaches A and B were good and performing close to 100% for both the planted acreage and invasive/encroachment area categories. Treatment control applications for exotic invasive species were conducted in monitoring Years 2 and 4; however, three Vegetation Problem Areas (VPAs), consisting predominantly of *Lonicera japonica* (Japanese honeysuckle) and *Rosa multiflora* (multi-flora rose) and exceeding the mapping threshold continue to persist. A more detailed summary of the results for the vegetation condition assessment can be found in Appendix B which includes a technical memorandum, current condition plan view (CCPV) figures, supporting data tables, and photo logs. The contents of Appendix B were submitted to NCDMS in May 2016 and served as the interim visual site assessment report.

The average density of total planted stems per plot ranges from 324 - 890 stems per acre with a tract mean (not including volunteers) of 587 stems per acre; therefore the Site has met the Year 5 vegetative success criteria of 260 trees per acre. Volunteer species continue to thrive throughout the vegetation plots and include planted species, as well as, other native species such as: *Pinus virginiana* and *Rubus* sp. Vegetation stem counts are summarized in Tables 7 and 9 of Appendix C.

Tables 5a through 5d (Appendix B) indicate the Project site has remained geomorphically stable overall, with lateral/vertical stability and in-stream structure performance of 100% on UT1B, 83 - 100% on Reach 1, 95 - 100% on Reach 2, and 60 - 100% on UT2 A and B. The sub-categories receiving scores of less than 100% are namely due to small localized areas of bank scour and/or erosion around structures. Stream Problem Areas (SPAs) correlating with these areas of instability for the project reaches are documented and summarized in Table 5e of Appendix B. A more detailed summary of the results for the visual stream stability assessment can be found in the "Site Assessment Report – Monitoring Year 5" in Appendix B.

The six permanent cross-sections along the Project site show that there has been little adjustment to stream dimension overall within the Project site since construction. Cross-section 9(X9) exhibits only a minor amount sedimentation in the riffle, which is most likely a result, as indicated from the sediment analysis, of an influx of sands from the upstream ford crossing. As indicated in Figure 3, cross-sectional measurements throughout the five year monitoring period have remained geomorphically similar to as-built conditions and do not indicate any stream bank or channel stability issues.

The longitudinal profiles show that bed features are stable. Pools are well maintained with only minor filling in the upstream sections of Reach 1 and UT1B, which is most likely due to the natural movement of sediment through the system in areas where the channel gradient is low and the floodplain remains inundated throughout much of the year. Grade control structures (constructed riffles, cross vanes and log sills) continue to help maintain the overall profile desired. As depicted in Figure 4, overall longitudinal profiles for Reach 1, 2, and UT1B have remained geomorphically stable throughout the post-construction five year monitoring period.

Visual observations and a review of pebble count data collected during Year 5 monitoring did not yield any signs that sediment transport functions have been hampered by the mitigation project. The pebble count data for South Fork Hoppers Creek and UT1B indicate that the stream is moving fines through the system and a mix of substrates make up the bed material. Pebble count data is provided in Figures 5a - 5c in Appendix D.

Two bankfull event were observed and documented during MY5. Overall the site has experienced at least seven documented bankfull events during the five year monitoring period. With at least two of the events occurring in separated monitoring years, the site has met its hydrologic success criteria. Information on bankfull events is provided in Table 12 of Appendix E.

Though groundwater data loggers for Wells 2 and 4 had to be replaced in August 2016, all four wetland areas met the success criteria for wetland hydrology during Monitoring Year 5. Groundwater conditions indicated saturated conditions existed throughout 100% of the growing season for Gauge 3 and for Gauges 2 and 4, after replacement, while Gauge 1 documented saturated conditions for 99.5% of the growing season. Based on ground water data collected during the five growing seasons following site construction (March 30, 2013 - November 2, 2016), the site has successfully met the success criteria for wetland hydrology of soil saturation within 12 inches of the soil surface for at least 9% of the growing season, or 19 consecutive days. See Appendix E for a depiction of plot of wetland gauge data as it relates to monthly precipitation for Monitoring Year 5 (Figure 7) and a summary of wetland gauge attainment for all five monitoring years (Table 13). See CCPV sheets (Figure 2) in Appendix B, for a depiction of wetland and corresponding gauge locations.

Summary information/data related to the occurrence of items such as beaver or encroachment, and statistics related to performance of various project and monitoring elements can be found in the tables and figures in the report appendices. Narrative background and supporting information formerly found in these reports can be found in the Baseline Monitoring Report (formerly Mitigation Plan) and in the Mitigation Plan (formerly Restoration Plan) documents available on DMS's website. It should be noted that the Baseline Monitoring Report and Mitigation Plan for this Project site is included with the summary of constructed design approaches for the South Muddy Creek Restoration Project (DMS Project No. 737), a nearby project site that was designed and constructed in conjunction with the Hoppers Creek - Melton Farm Stream Restoration Project as part of the same DMS on-call design and construction services contract. All raw data supporting the tables and figures in the appendices is available from DMS upon request.

2.0 METHODOLOGY

The five-year monitoring plan for the Project site includes criteria to evaluate the success of the vegetation, stream, and wetland components of the project. The methodology and report template used to evaluate these three components adheres to the DMS monitoring guidance document dated November 7, 2011, which will continue to serve as the template for subsequent monitoring years. The specific locations of monitoring features, such as vegetation plots, permanent cross-sections, reference photo stations and wetland/crest gauges, are shown on the CCPV sheets found in Figure 2 of Appendix B.

The majority of Year 5 monitoring data was collected in May 2016 and October 2016. All visual site assessment data was collected on May 25, 2016. Vegetation monitoring plot and sediment data were collected between October 18th and 19th, 2016. All stream survey (channel dimension and profile) data were collected between September 27th and October 4th, 2016. Stream survey data was collected to a minimum of Class C Vertical and Class A Horizontal Accuracy using Leica TS06 Total Station and was geo-referenced to the NAD83 State Plane Coordinate System, FIPS3200 in US Survey Feet, which was derived from the South Fork Hoppers Creek Asbuilt Survey.

2.1 Stream Assessment

Geomorphic monitoring of restored stream reaches was conducted for five years to evaluate the effectiveness of the restoration practices installed. Monitored stream parameters include channel dimension (cross-sections), profile (longitudinal survey), bed composition, bank and channel stability, bankfull flows, and reference sites documented by photographs. A crest gauge, as well as high flow marks, were used to document the occurrence of bankfull events. The methods used and any related success criteria are described below for each parameter. For monitoring stream success criteria, 6 permanent cross-sections, 1 crest gauge, and 39 photo identification points were installed.

2.1.1 Morphologic Parameters and Channel Stability

2.1.1.1 Dimension

Six permanent cross-sections were installed throughout the entire project area. Cross-sections selected for monitoring were located in representative riffle and pool facets and each cross-section was marked on both banks with permanent pins to establish the exact transect used. Each of the three restored Project reaches, Reaches 1 and 2 of South Fork Hoppers Creek and UT1B, contains one riffle and one pool cross-section. A common benchmark is being used for cross-sections and consistently referenced to facilitate comparison of year-to-year data. The cross-sectional surveys included points measured at major breaks in slope, including top of bank, bankfull, inner berm, edge of water, and thalweg, if the features are present. Riffle cross-sections were classified using the Rosgen Stream Classification System (Rosgen, 1994), and all monitored cross-sections should fall within the quantitative parameters defined for channels of the design stream type.

There should be little change in as-built cross-sections. If changes do take place, they will be evaluated to determine if they represent a movement toward a more unstable condition (e.g., down-cutting or erosion) or a movement toward increased stability (e.g., settling, vegetative changes, deposition along the banks, or decrease in width/depth ratio). Cross-sectional data is presented in Figure 3 of Appendix D.

2.1.1.2 Longitudinal Profile

Longitudinal profiles were surveyed for the entire restored lengths of Reaches 1 and 2 of South Fork Hoppers Creek and UT1B, and are provided in Figure 4 of Appendix D. Longitudinal profiles were replicated annually during the five year monitoring period.

Measurements taken during longitudinal profiles include thalweg, water surface, and the top of low bank. All measurements were taken at the head of each feature (e.g., riffle, run, pool, glide) and the maximum pool depth. Elevations of grade control structures were also included in the longitudinal profiles surveyed. Surveys were tied to a permanent benchmark.

The pools should remain relatively deep with flat water surface slopes, and the riffles should remain steeper and shallower than the pools. Bed form observations should be consistent with those observed for channels of the design stream type as well as other design information.

2.1.1.3 Substrate and Sediment Transport

Bed load material analysis consists of a pebble count taken in the same constructed riffle during annual geomorphic surveys of the Project site. One sample was collected at the riffle cross-section corresponding with each of the three restored Project reaches for a total of three sediment samples (cross-sections X5, X7, X9). These samples, combined with evidence provided by changes in cross-section and profile data will reveal changes in sediment gradation that occur over time as the stream adjusts to upstream sediment loads. Significant changes in sediment gradation were evaluated with respect to stream stability and watershed changes. Bed material distribution data are located in Figure 5 of Appendix D.

2.1.2 Hydrology

2.1.2.1 Streams

The occurrence of bankfull events within the monitoring period were documented by the use of crest gauges and photographs. One crest gauge was installed on the floodplain at the bankfull elevation along the right top of bank at station 15+10. The bottom of the crest gauge coincides with the top of bank (bankfull) elevation. The crest gauges record the highest watermark between site visits, and are checked at each site visit to determine if a bankfull event has occurred. Photographs are used to document the occurrence of debris lines and sediment deposition on the floodplain during monitoring site visits.

Two bankfull flow events must be documented at the crest gauge within the 5-year monitoring period. The two bankfull events must occur in separate years; otherwise, the stream monitoring will continue until two bankfull events have been documented in separate years or until the monitoring period ends. If two bankfull events have not been documented at the end of 5 years the Interagency Review Team (IRT) will have to decide on an appropriate course of action.

2.1.3 Photographic Documentation of Site

Photographs were used to document restoration success visually. Reference stations were photographed during the as-built survey; this will be repeated for at least five years following construction. Reference photos were taken once a year, from a height of approximately five to six feet. Permanent markers ensure that the same locations (and view directions) are utilized during each monitoring period. Selected site photographs are shown in Appendix B.

2.1.3.1 Lateral Reference Photos

Reference photo transects were taken of the right and left banks at each permanent cross-section. A survey tape was captured in most photographs which represents the cross-section line located perpendicular to the channel flow. The water line was located in the lower edge of the frame in order to document bank and riparian conditions. Photographers will make an effort to consistently maintain the same area in each photo over time.

2.1.3.2 Structure Photos

Photographs of primary grade control structures (i.e. vanes and weirs), along the restored streams are included within the photographs taken at reference photo stations. Photographers have made every effort to consistently maintain the same area in each photo over time.

Lateral and structure photographs were used to evaluate channel aggradation or degradation, bank erosion, success of riparian vegetation, structure function, and stability, and effectiveness of erosion control measures subjectively. Lateral photos should not indicate excessive erosion or degradation of the banks. A series of photos over time should indicate successive maturation of riparian vegetation and consistent structure function.

2.1.4 Visual Stream Morphological Stability Assessment

The visual stream morphological stability assessment involves the qualitative evaluation of lateral and vertical channel stability, and the integrity and overall performance of in-stream structures throughout the Project reach as a whole. Habitat parameters, such as riffle embeddedness and pool depth maintenance, were also measured and scored. The entire project reach was walked, noting geomorphic conditions of the stream bed profile (riffle/pool facets), both stream banks, and engineered in-stream structures. Photos were taken at every stream photo reference station as discussed in the previous section, and in locations of potential SPAs which were documented in the field for subsequent mapping on the CCPV figures. A more detailed summary of the methodology and results for the visual stream stability assessment can be found in Appendix B which includes a technical memorandum, supporting data tables, and SPA photos.

2.2 Vegetation Assessment

Successful restoration of the vegetation on a mitigation site is dependent upon hydrologic restoration, active planting of preferred canopy species, and volunteer regeneration of the native plant community. In order to determine if the criteria are achieved, twelve vegetation monitoring quadrants were installed across the Project site, which included one wetland vegetation plot. The total number of quadrants was calculated using the CVS-NCEEP Entry Tool Database version 2.3.1 (CVS-NCEEP, 2012). The size of individual quadrants for tree species is 100-square meters. Level 1 CVS vegetation monitoring was conducted between spring, after leaf-out has occurred, and fall prior to leaf fall. At the end of the first growing season during baseline surveys, species composition, density, and survival were evaluated. Individual quadrant data provided during subsequent monitoring events will include diameter, height, density, and coverage quantities. Relative values were calculated, and importance values were determined. Individual seedlings were marked to ensure that they can be found in succeeding monitoring years. Mortality was determined from the difference between the previous year's living, planted seedlings and the current year's living, planted seedlings.

The interim measure of vegetative success for the site is the survival of at least 320, 3-year old, planted trees per acre at the end of Year 3 of the monitoring period. The final vegetative success criteria is the survival of 260, 5-year old, planted trees per acre at the end of Year 5 of the monitoring period.

Photographs were used to visually document vegetation success in sample plots. Reference photos of vegetation condition within plots were taken at least once per year. As part of the visual site assessment conducted on May 25, 2016, the vegetation condition of planted vegetation along stream banks, floodplains (wetlands), and terraces were qualitatively evaluated for performance. This assessment also included the documentation of invasive species and potential VPAs, which were recorded in the field for subsequent mapping on the CCPV figures. A more detailed summary of the methodology and results for the vegetation condition assessment can be found in Appendix B which includes a technical memorandum, supporting data tables, and photo logs.

2.3 Wetland Assessment

Four groundwater monitoring stations were installed in restored/enhanced wetland areas to document hydrologic conditions at the Project site. These four wetland gauges are depicted on the CCPV figures found

in Appendix B. Installation and monitoring of the groundwater stations have been conducted in accordance with the USACE standard methods outlined in WRP Technical Notes ERDC TN-WRAP-00-02 (July 2000). Precipitation data from a nearby U.S. Geological Survey rain gauge near Morganton, NC (USGS 354353081410545) was used for comparison to post-construction groundwater monitoring conducted during the Year 4 growing season. This data was obtained from the USGS "waterdata" website (USGS 2016).

Baker used DRAINMOD (Version 5.1) to develop hydrologic simulation models that represented conditions at a variety of locations across the Project site. DRAINMOD indicated wetland hydrology would occur for approximately 6-12% of the growing season. Based on these findings, it was determined that success criteria for wetland hydrology will be met when each wetland site is saturated within 12 inches of the soil surface for at least 9% of the growing season, or 19 consecutive days.

3.0 REFERENCES

Carolina Vegetation Survey (CVS) and NC Ecosystem Enhancement Program (NCEEP). 2012. CVS-NCEEP Data Entry Tool v. 2.3.1. University of North Carolina, Raleigh, NC.

Lee, M., Peet R., Roberts, S., Wentworth, T. 2007. CVS-NCEEP Protocol for Recording Vegetation, Version 4.1.

Rosgen, D. L. 1994. A Classification of Natural Rivers. Catena 22:169-199.

US Army Corps of Engineers, WRP, July 2000. Technical Notes ERDC TN-WRAP-00-02.

US Geological Survey, 2016. USGS 354353081410545. Morganton, NC. Retrieved: 2016-11-28. http://waterdata.usgs.gov/nc/nwis/uv/?site_no=354353081410545&PARAmeter_cd=00045

APPENDIX A

PROJECT VICINITY MAP AND BACKGROUND TABLES

				South Fork Ho	T ppers Creek - M	able 1. Project C Ielton Farm Res	Components toration Project: D	DMS Project No. 92251
Project Segment or Reach ID	Existing Feet/Acres*	Mitigation Type	Approach	Linear Footage or Acreage*	Mitigation Ratio	Mitigation Units	Stationing	Comment
South Fork Hoppers Creek - Reach 1		R	P1	783	1:1	783	10+00 - 17+83	Installed in-stream structures to control grade, reduce bank erosion, and provide habitat. Priority I was implemented to reestablish stream pattern and relocate the channel onto the historic floodplain.
South Fork Hoppers Creek - Reach 2	1,350	R	P1	445	1:1	445	17+83 - 22+48**	Installed in-stream structures to control grade, reduce bank erosion, and provide habitat. Priority I was implemented to reestablish stream pattern and relocate the channel onto the historic floodplain.
		Р	-	722	5:1	144	-	Preservation. A 30 - 100 foot conservation easement was implemented to on right and left stream banks.
UT1 - Reach A	782	EII	P4	60	2.5:1	24	7+86 - 8+46***	Regraded right bank to create a bankfull bench and implemented riparian plantings to improve stability and reduce erosion.
		Р	-	51	5:1	10	9+49 - 10+00***	Preservation. A 30 - 100 foot conservation easement was implemented to on right and left stream banks.
UT1 - Reach B	970	R	P1	1,065	1:1	1065	10+00 - 20+85**	Installed in-stream structures to increase habitat diversity. Installed fencing to restrict cattle access. Priority I was implemented to restore dimension, pattern, and profile.
UT2 - Reach A	366	EII	P4	379	2.5:1	152	10+00 - 13+79	Regraded banks and implemented a step-pool channel where feasible. Implemented fencing to restrict hog access.
UT2 - Reach B	802	EII	P4	818	2.5:1	327	13+79 - 22+17**	Regraded banks and implemented riparian plantings to improve reach stability and reduce erosion.
UT3	298	Р	-	298	5:1	60	-	Preservation. A 30 - 100 foot conservation easement was implemented to on right and left stream banks.
Ephermal drainage in left floodplain of South Fork Hoppers Creek	348	-	-	497	-		-	Stabilized ephemeral drainage from adjacent pasture by creating a flat bottom swale. Swale was matted and seeded. Not being sought for mitigation credit.
Ephermal drainage near the upstream extend of UT2	80	-	-	80	-		-	Stabilized ephemeral drainage with boulder sill structures and armored channel bed. Areas outside the channel were mulched and planted. Not being sought for mitigation credit
Ephemeral drainage at Station	15	-	-	15	-		-	Stabilized ephemeral drainage by regrading, rematting, and armoring with riprap. Not being sought for mitigation.
	0.00	Е	-	0.33	2:1	.165	-	Regraded the wetland boundary to improve hydrologic imputs and maximize surface storage.
Wetland	0.33	R	-	1.23	1:1	1.23	-	Restored wetland hydrology to the original stream alignment.
* Existing reach breaks and design	reach breaks varied	based on initial ge	omorphic differe	nces and design requireme	nts.	•	•	
** Stationing includes 20 ft. stream ***During construction enhanceme	ent slated to occur be	etween 9+49 and 10	0+00 of UT1B w	vas shifted upstream into U	T1A per conversat	tions with DMS an	d CEC. The section s	slated for enhancement at the top of UT1B (9+49 to 10+00) became presevation upon the field change.
						Component Sur	nmations	
Restoration Level		Stream		Riparian			Non-Ripar	Upland
		(LF)	Riverine	Vetland (Ac)			(Ac)	(Ac)
Restoration		2.293	1.23	-			-	
Enhancement		_,_>	0.33	-			-	-
Enhancement I		-						
Enhancement II		1,257						
Creation			-	-			-	-
Preservation		1,071	-	-			-	
HQ Preservation		-		-			-	-
			1.56	0.00				
	Totals	s 4,621		1.56	-			
1	otal Mitigation Units = Non - A	s <u>3010 SMU</u> pplicable		1.40 WMU	l	1	1	
	11011 - A	rrnouble						

MICHAEL BAKER ENGINEERING, INC., DMS PROJECT NO. 92251 SOUTH FORK HOPPERS CREEK - MELTON CREEK STREAM RESTORATION PROJECT YEAR 5 MONITORING REPORT - 2017, MONITORING YEAR 5 OF 5

Table 2. Project Activity an South Fork Hoppers Creek - Melton Farm Rest	d Reporting Hi oration Project	story : DMS Project No.	92251						
Elapsed Time Since Grading/Planting Complete: 5 Years 6 Months Number of Reporting Years: 5									
Activity or Report	Scheduled Completion	Data Collection Complete	Actual Completion or Delivery						
Restoration Plan Prepared	N/A	N/A	Jul-07						
Restoration Plan Amended	N/A	N/A	Jan-08						
Restoration Plan Approved	N/A	N/A	Aug-08						
Final Design – (at least 90% complete)	N/A	N/A	Jun-09						
Construction Begins	Jun-10	N/A	Jun-10						
Temporary S&E mix applied to entire project area	N/A	N/A	N/A						
Permanent seed mix applied to entire project area	Nov-10	N/A	Jan-11						
Planting of live stakes	Mar-11	N/A	Mar-11						
Planting of bare root trees	Mar-11	N/A	Mar-11						
End of Construction	Mar-11	N/A	Jun-11						
Survey of As-built conditions (Year 0 Monitoring-baseline)	Nov-10	N/A	Jun-11						
Year 1 Monitoring	Dec-12	Sep-12	Nov-12						
Invasive Treatment	NA	NA	Aug-13						
Year 2 Monitoring	Dec-13	Sep-13	Dec-13						
Year 3 Monitoring	Dec-14	Sep-14	Dec-14						
Invasive Treatment	NA	NA	Sep-15						
Year 4 Monitoring	Dec-15	Sep-15	Dec-15						
Year 5 Monitoring	Dec-16	Nov-16	Jan-17						

Table 3. Proj	ect Contacts Table
South Fork Hoppers Creek - Melton Far	m Restoration Project: DMS Project No. 92251
Designer Michael Baker Engineering, Inc.	9716-B Rea Road #56 Charlotte, NC 28277 <u>Contact:</u> Kristi Suggs, Tel. 704-665-2206
Construction Contractor	
Carolina Environmental Contracting, Inc.	150 Pine Ridge Road Mount Airy, NC 27030 <u>Contact:</u> Joanne Cheatham, Tel. 336-320-3849
Planting Contractor	
Carolina Environmental Contracting, Inc.	150 Pine Ridge Road Mount Airy, NC 27030 <u>Contact:</u> Joanne Cheatham, Tel. 336-320-3849
Seeding Contractor	
Carolina Environmental Contracting, Inc.	150 Pine Ridge Road Mount Airy, NC 27030 <u>Contact:</u> Joanne Cheatham, Tel. 336-320-3849
Seed Mix Sources	Green Resources, Tel. 336-855-6363
Nursery Stock Suppliers	Foggy Mountain Nursery, Tel. 336-384-5323
Profession Land Surveyor	
Turner Land Survey, PLLC.	3201 Glenridge Drive Raleigh, NC 27604 <u>Contact:</u>
Professional Land Surveyor	David Turner, Tel. 919-875-1378
As-Built Plan Set Production	Lissa Turner, Tel. 919-875-1378
Monitoring Performers	
Michael Baker Engineering, Inc.	9716-B Rea Road #56 Charlotte, NC 28277 Contact:
Stream Monitoring Point of Contact:	Kristi Suggs, Tel. 704-665-2206
Vegetation Monitoring Point of Contact:	Kristi Suggs, Tel. 704-665-2206
Wetland Monitoring Point of Contact:	Kristi Suggs, Tel. 704-665-2206

	Table 4. Project Attribute Table South Fork Hoppers Creek - Melton Farm Restoration Project: DMS Project No. 92251									
Project County/McDowell County NC										
Physiographic Region	Piedmont									
Ecoregion	Inner Piedmon Belt	ner Piedmon Belt								
Project River Basin	Catawba									
USGS HUC for Project and Reference sites	Project: 030501010	40020; References: 02	3040103050 -090 (S	pencer Creek), -080 (H	Barnes Creek); 0303	0002060 -070 (Me	organ Creek); 030	20201080 -020 (Sal	's Branch)	
NCDWO Sub-basin for Project and Reference	Project: 03-08-30;	References: 03-07-09 (Spencer Creek and I	Barnes Creek); 03-06-0	6 (Morgan Creek);	03-04-02 (Sal's Br	anch)			
Within extent of EEP Watershed Plan ?	Muddy Creek Local	Watershed Plan (LWF	P), 2003							
WRC Class (Warm, Cool, Cold)	Warm									
% of project easement fenced or demarcated	100%									
Beaver activity observed during design phase ?	None									
		I	Restoration Compo	nent Attribute Table			-			
	South Fork	South Fork Hoppers -	UT1 - Reach A	UT1 - Reach A	UT1 - Reach B	UT1 Deach B	UT2 Reach A	UT2 Reach B	UT2	
	Hoppers - Reach 1	Reach 2	(Preservation)	(Enhancement 2)	(Preservation)	011 - Keach B	012 - Keach A	012 - Keacil B	015	
Drainage area (sq. mi.)	0.48	0.52	0.06	0.06	0.08	0.08	0.04	0.07	0.02	
Stream order	· 2nd	2nd	1st	1 st	1st	1 st	0	0	0	
Restored length	783	445	722	60	51	1,065	379	818	298	
Perennial or Intermitten	t Perennial	Perennial	Perennial	Perennial	Perennial	Perennial	Perennial	Perennial	Intermittent	
Watershed type (Rural, Urban, Developing etc.)	Rural	Rural	Rural	Rural	Rural	Rural	Rural	Rural	Rural	
Watershed LULC Distribution (e.g.)										
Developed Low-Medium Intensity	7	-	-	-	-	-	-	-	-	
Ag-Cultivated Crops	š	1.5	-	-	-	-	-	-	-	
Ag-Pasture/Hay	r 1	5.3	-	-	-	-	-	-	-	
Forested	6	0.8	-	-	-	-	-	-	-	
Other (Open water, Grassland, Etc.)	2	2.4	-	-	-	-	-	-	-	
Watershed impervious cover (%)	U	U	U	U	U	U	U	U	U	
NCDWQ AU/Index number	· 03-08-30	03-08-30	03-08-30	03-08-30	03-08-30	03-08-30	03-08-30	03-08-30	03-08-30	
NCDWQ classification	i C	C	<u> </u>	C	<u> </u>	C	C	C	<u> </u>	
303d listed ?	No	No	No	No	No	No	No	No	No	
Upstream of a 303d listed segment?	NO	NO	NO	NO	No	No	NO	No	No	
Reasons for 303d listing or stresson	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Total acreage of easment	t				10.1					
I otal planted arceage as part of the restoration	C5a	C4/1	D	D	3./ E5	E4	C5	C5a	D	
Rosgen classification of As built		C5	D	D	E5 C5	EJ C5	C5/P5	G50	D	
Kusgen classification of AS-Dull Vallay type		Alluvial	ط Alluvial	Alluvial	Alluvial	Alluvial	Alluvial	Alluvial	Alluvial	
Valley slope		0.0115 ft/ft	Alluvial	Alluvial			0.034 ft/ft		Alluviai	
Valley side slope range (e.g. 2 30/)	I	I			U.025 IVIL	U.U.Z.S TUT	I	U.025 IUII	-	
Valley for slope range (e.g. 2-3%)	U	U		_	U	U	U	U	_	
Cowardin classification		0		ł	6	Ū	0	0		
Trout waters designation	No	No	No	No	No	No	No	No	No	
Species of concern. endangered etc ? (V?N	No	No	No	No	No	No	No	No	No	
Dominant soil series and characteristics										
Series	IoA	IoA	EwE	EwE	IoA	IoA	HeD	HeD / IoA	EwE	
Depth	10	10	5	6	10	10	5, 8	5,8 / 10	5	
Clav %	18	18	25,20	25,20	18	18	25	25 / 18	25,20	
K	0.15	0.15	0.17, 0.10	0.17, 0.10	0.15	0.15	0.24, 0.17	0.24, 0.17 / 0.15	0.17, 0.10	
Т	5	5	3 / 5	3 / 5	5	5	5	5 / 5	3 / 5	

MICHAEL BAKER ENGINEERING, INC., DMS PROJECT NO. 92251 SOUTH FORK HOPPERS CREEK - MELTON CREEK STREAM RESTORATION PROJECT YEAR 5 MONITORING REPORT - 2017, MONITORING YEAR 5 OF 5

APPENDIX B

VISUAL ASSESSMENT DATA

<u>Site Assessment Report – Monitoring Year 5</u>

Hoppers Creek-Melton Farm Stream Restoration Project McDowell County, North Carolina May 2016

Submitted To:	NCDEQ – Division of Mitigation Services 1625 Mail Service Center Raleigh, NC 27699 NCDEQ Contract ID No. 004518
Submitted By:	Michael Baker Engineering, Inc. 9716-B Rea Road #56 Charlotte, NC 28277 License: F-1084, Baker Project No. 128244

Michael Baker

1 Introduction

1.1 Purpose

This report summarizes overall stream and vegetation conditions as part of an interim site assessment conducted in conjunction with the Year 5 monitoring services for the Hoppers Creek-Melton Farm Stream Restoration Project site located in McDowell County, NC. This site assessment will be included as part of a more comprehensive Annual Monitoring Report to be completed and submitted later this year (Fall 2016). The report describes project objectives, discusses the assessment methodology, summarizes assessment results, and documents potential stream and vegetation problem areas (SPAs and VPAs respectively).

1.2 Objectives

The objectives of the site assessment were to:

- Provide a general overview of stream morphological stability;
- Provide a general overview of vegetation conditions;
- Identify and document potential SPAs and VPAs.

1.3 Supporting Data

Supporting data and information are provided following the narrative portion of this report and include:

- Current condition plan view (CCPV) figures (Figure 2, sheets 1 through 3);
- Visual stream morphology stability assessment table (Tables 5a through 5d);
- SPA inventory table (Table 5e);
- Vegetation condition assessment table (Tables 6a and 6b);
- VPA inventory table (Table 6c);
- Stream station photos;
- SPA photos;
- VPA photos.

2 Methodology

The methodology used for assessing overall stream and vegetation conditions at the Hoppers Creek-Melton Farm Stream Restoration Project site adhered to the NCDEQ DMS monitoring guidance documents (dated November 7, 2011). The site assessment was comprised of two components, a visual stream morphology stability assessment and a vegetation condition assessment, both of which are described in more detail in the following sections of this report. The assessment was strictly qualitative. Vegetation monitoring plot counts were excluded from this assessment but will be conducted after July 2015. This data will be summarized in Appendix C and the CCPV figure of the Year 5 Annual Monitoring Report to be submitted in late November of this year. The Hoppers Creek-Melton Farm Stream Restoration Project site was evaluated as four separate project reaches for the visual stream morphology stability assessment as they were for the Final Baseline Monitoring Document/As-Built Report: South Fork Hoppers Creek (SFHC) Reaches 1 and 2, UT1 Reach B, and UT2 (Reaches A and B). SFHC Reaches 1 and 2 are delineated by the confluence of UT1 Reach B where SFHC Reach 1 is located upstream of the confluence and SFHC Reach 2 is located downstream of the confluence. UT2 Reach A extends from the upstream limits located within the conservation easement boundary to the downstream limits of the constructed step-pool channel, and UT2 Reach B includes the remaining corridor located downstream of the step-pool channel until its confluence with SFHC Reach 1.

2.1 Visual Stream Morphology Stability Assessment

The visual stream morphology stability assessment involved the evaluation of lateral and vertical channel stability, and the integrity and overall performance of in-stream structures throughout each of the four project stream reaches. Habitat parameters, such as riffle embeddedness and pool depth maintenance, were also measured and scored. Each stream reach was walked, noting geomorphic conditions of the stream bed profile (riffle/pool facets), both stream banks, and engineered instream structures. Photos were taken at every existing stream photo point (from the as-built) and in locations of potential SPAs which were recorded in the field for subsequent mapping on the CCPV figures.

2.2 Vegetation Condition Assessment

The vegetation condition assessment involved the evaluation of vegetation within the 10.1 acre conservation easement and included assessing the performance of planted vegetation along stream banks, floodplains, and terraces as well as the documentation of invasive species. The assessment of planted vegetation was confined to the 5.7 acres of riparian buffer planting zones located within the easement boundary as part of the restoration design; whereas, invasive vegetation and encroachment areas of invasive species were evaluated for the entire 10.1 acre easement boundary. Photos were recorded in locations of potential VPAs throughout the easement, such as areas exhibiting sparse or slow growth/vigor, low stem density, and invasive areas of concern.

2.3 **Post-processing of Field Data**

The post-processing of field data consisted of the download and organization of photos into respective photo logs (stream and vegetation), creating the CCPV figures in GIS using the field-mapped SPAs and VPAs, populating the SPA and VPA tables, and finally scoring the performance of the four stream reaches and two vegetation tracts in terms of stream morphological stability and vegetation condition using assessment forms provided by NCDEQ DMS.

3 Summary of Results

3.1 Visual Stream Morphology Stability Assessment

Tables 5a through 5d summarize the performance of each of the four project stream reaches mentioned above for the Hoppers Creek-Melton Farm Stream Restoration Project in terms of lateral (stream bank) and vertical (channel bed) stability while evaluating the functionality and integrity of in-stream structures. Engineered in-stream structures evaluated for the assessment of this project reach consisted of constructed riffles, log sills (drops), cross vanes, log vanes, root wads, geo-lifts, and brush mattresses. Constructed riffles were justified for inclusion in the evaluation of structures since they are the predominant grade control structure used throughout the site; however, they were

only assessed for the 'overall integrity' and 'grade control' parameter categories in Tables 5a through 5d.

As Tables 5a through 5d indicate, the Hoppers Creek-Melton Farm Stream Restoration Project site was geomorphically stable overall and performing at or near 100 percent as the design intended for the majority of parameters evaluated within the lateral/vertical stability and in-stream structure performance categories. UT1 Reach B was functioning at the highest level geomorphically out of all the stream project reaches, performing at 100 percent for all morphological sub-categories. Individual results for the remaining reaches varied in performance for the three major morphological channel categories.

Both SFHC Reach 1 and Reach 2 performed at 100% for bedform condition and stability and at 96% for bank stability; however, they differed slightly relative to performance of engineered structures. SFHC Reach 1 received scores ranging from 91% to 100% for the performance of engineered structures, while SFHC Reach 2 received ranging from 95% to 100%. Performance rates of less than 100% on these reaches were due primarily due to erosional pockets forming around root wad and log sill bank tie-ins.

UT2 performed near 100% for the majority of the sub-category metrics. Pool performance for two out of the five step pools received more moderated ratings in the categories of condition and habitat. Though the results seem unfavorable, they are likely only the result of the natural processes of moving sediment loads from large storm events through the system and not a performance issue. This is especially likely since these results were not noted as occurring or trending in previous assessment years. SPAs correlating with these issues for these three project reaches were documented and summarized in Table 5e.

There were a total of thirteen SPAs documented, three of which were identified during the Year 1 visual assessment, one that was identified during the Year 2 assessment, three that were identified during the Year 4 assessment, and six that were identified during the Year 5 assessment. SPAs documented in previous years were included in this assessment since they have persisted to date. Any SPA's that have been documented in previous reports, but were not indicated as problems during the Year 5 assessment will not be described.

The first number in the SPA naming convention (in Table 5e) references the monitoring year in which the SPA was identified during the visual assessment. A brief description of the SPAs reported from this year and persisting from previous years is discussed below. The SPAs from previous years noted in this report have generally remained unchanged in condition and scale when observed during this assessment, but they still remain problem areas and should be monitored. All are included in the scoring of morphological performance categories in Tables 5a through 5d, and are also summarized in Table 5e, Figure 2 (CCPV), and the SPA photolog.

SPA1-2 is characterized by a localized area of bank scour along the right bank of Reach 1 of SFHC. This SPA is likely caused by the invert of the upstream log roller directing the channel flow toward the bank just downstream of sill tie-in. The bank slope in this area is vertical; however, it is well vegetated at the top of bank. The area may widen slightly, but should stabilize in time as the large woody vegetation becomes even more established in this area.

SPA1-5 consists of the piping of flow around a log sill structure in UT2 Reach A. The structure is vertically and laterally stable and should seal over time.

The heavily armored, ephemeral drainage located near the upstream extents of UT2 Reach A was inspected for overall structural integrity and stability even though the short reach is not being sought

for mitigation credit. Upon inspection, the channel bed of the downstream riffle cascade has eroded (SPA1-6) and a small localized area of erosion persists on the right upper bank. Coarse riprap material has been deposited downstream atop the lowest elevation boulder sill, exposing the underlying filter fabric as a result.

SPA2-1 and SPA5-3 are located just downstream of a log sill on SFHC Reach 1 at Station 16+25. These SPAs are characterized by erosion, undercut bank, and structure failure. The invert along the upstream log sill is directing velocity vectors into the bank which has caused erosion to occur around the back of the root wad and the invert/left bank tie-in of the downstream log sill; therefore, resulting in structure failure. The root wad has slumped into the channel and the log sill had separated from the bank and is under water. Native herbaceous and woody vegetation are present and providing some stability to the bank. This area will be assessed again during the Year 5 Monitoring period to document its state of stability.

SPA4-1 and SPA 5-5 are located on the left bank just downstream of a log sill on SFHC Reach 2 at Station 20+20. These SPAs are characterized by erosion, undercut bank, and structure failure. The invert along the upstream log sill is directing velocity vectors into the bank causing erosion to occur around the back of the root wad and around the downstream of log sill invert/left bank tie-in. The root wad and the sill's header log are still tied-in to the bank; however, it appears that the sill's header and footer have separated. Currently the header log is suspended across the channel above the surface water elevation. Native herbaceous and woody vegetation are present and aiding in the stability of the bank. This area will be assessed again during the Year 5 Monitoring period to document its state of stability.

SPA4-2 consists of both bank erosion and undercut bank and is located along the right bank downstream of a log sill on SFHC Reach 2 (Station 20+75). This SPA is likely caused by the invert of the log sill directing the channel flow into the right bank just downstream of sill's tie-in. The area of erosion is located immediately upstream of the root wad and may eventually compromise the integrity of the structure. However, the root wad is still providing some bank protection, at this time. Native herbaceous and woody vegetation are present and are providing some stability to the bank. This area will be assessed again during the Year 5 Monitoring period to document its state stability.

SPA4-3 is located on UT2 Reach A between Stations 12+36 to 12+53. In this area, the channel hugs the valley wall, and the outside meander bend experiences high levels of near bank stress during bankfull events which has led to a localized area of bank scour.

SPA5-1 and SPA5-2 are located on UT 2 Reach A just below the second and fourth log step, respectively. These SPAs consist of sediment filled pools. Because it is normal for an active channel to move sediment through the system and there are no other indicators of excessive aggradation within this area, it is likely that this is just part of the normal channel processes. These SPAs will be reassessed during the Year 5 monitoring period.

SPA 5-4 is located on Reach 1 of SFHC from Station 18+30 to 18+45. The SPA consists of a localized area of erosion on the left in between the rootwads along the apex of the meander bend. Both woody and herbaceous vegetation are still present and aiding the stability of the bank. This area is likely to heal over time.

SPA 5-6 is located on Reach 2 of SFHC at Station 20+45. The SPA consists of undercutting of the right bank between root wads immediately downstream of the compromised log sill associated with SPA5-5. This appears to be a localized area of erosion caused by high levels of near bank stresses

directed at the right bank and currently it is unclear whether or not this SPA is a result of the upstream problem area. This area will be further monitored during the Year 5 monitoring period.

Log sills associated with deep scour pools on UT1 Reach B between Stations 19+00 and 19+50 were inspected and assessed for vertical stability per DMS' request during the Year 2 assessment and reassessed during the Year 4 assessments. DMS' concern was that the depth of some of the scour pools on a channel with such a small dimension could potentially pose a threat and undermine the integrity of its upstream log step. During these assessments pool depth and pool to pool ratio were evaluated and compared to the design values.

The upstream log sill was the deepest of the three located within the assessment area and had a d_{pool} value and d_{pool}/d_{bkf} ratio of 2.8 feet and 5.2 respectively. These measurements are greater than design values and had slightly increased from the previous assessment; however, they still meet DMS' monitoring guidance criteria for the assessment. Additionally, this log sill structure was evaluated for stability. Because each sill is constructed with both a header and footer log, the footer log on this log sill was still buried below the elevation of the scour pool, affording protection from undermining and helping to hold the entire structure firmly in place. Therefore, since the channel bed is stable and it is normal for pool depths and pool to pool ratios to fluctuate over time in an active riparian systems. Observations of this area during the Year 5 assessment did not document any instability; therefore, no measurements were taken. These log sills/scour pools will also be assessed during the Year 5 monitoring period.

3.2 Vegetation Condition Assessment

Tables 6a and 6b summarize the vegetation conditions of the Hoppers Creek-Melton Farm Stream Restoration site. Table 6a references the vegetation assessment tract associated with SFHC Reaches 1 and 2, and UT1 Reach B; Table 6b references the vegetation assessment tract associated with UT2 (Reaches A and B). There were a total of three mapped VPAs. All of which consist of the presence of an invasive species population at least 1000 square feet in size. One of the three was identified during the Year 2, while the remaining two were identified during the Year 4 assessment. The presence of invasive species accounts for all three of the VPAs.

A DMS licensed contractor conducted exotic invasive plant control between June 20 and August 14, 2013. In September 2015, invasive species control treatments were conducted using a variety of treatment applications such as: cut-stump, foliar, hand pull, and hand digging methods. Invasive species that were treated throughout the conservation easement in September 2015 included Kudzu, multi-flora rose, privet, mimosa, autumn olive, trifoliate orange, tree of heaven, and Bradford pear.

As with the SPAs, the first number in the VPA naming convention references the monitoring year in which the VPA was identified during the visual assessment. A brief description of the VPAs reported from previous year's assessment that have persisted as well as Year 4 VPA's is discussed below. All VPAs are included in the scoring of easement acreage performance categories in Tables 6a and 6b, and are also summarized in Table 6c, Figure 2 (CCPV), and the VPA photolog.

VPA2-4 is located on UT1 Reach B within vegetation monitoring plot 22 on the right floodplain terrace. The area has received treatment applications in the past; however, though the overall populations of multi-flora rose and Japanese honeysuckle within this area have diminished, they continue to persist. The combined total acreage is 0.03 acres, or 0.3% of the planted area acreage for this assessment tract.

Two VPAs of invasive species also continue to persist after treatment along UT2 (VPA4-3 and VPA4-5). Both VPAs are located within the floodplain. VPA4-3 consists of both multi-flora rose

and Japanese honeysuckle, while VPA4-5 is comprised primarily of the latter. VPA4-3 encompasses the majority vegetation monitoring plot 14. The combined total acreage for these two VPAs is 0.06 acres, or 4.0% of the planted area acreage for this assessment tract.

Though there were no other VPAs which exceeded the mapping threshold, individual stems and/or localized populations of invasive species were observed throughout the assessment area. These species consisted primarily of multi-flora rose; however, Chinese privet and Japanese honeysuckle were also noted. Locations of these species were mainly limited to the fence line along the easement with a few sporadic populations within the planted easement areas.

MATCHLINE SHEET 3

VEGETATION PROBLEM AREA (VPA) **INVASIVE SPECIES PRESENT** VEGETATION PROBLEM AREA (VPA) BARE FLOOD PLAIN AREA CREST GAUGE WETLAND GAUGE WETLAND ENHANCEMENT / RESTORATION

MATCHLINE SHEET 2

SOUTH FORK HOPPERS CREEK CURRENT CONDITION PLAN VIEW YEAR 5 MONITORING STA. 10+00 - 22+48

DRAWN:

APPROVED: JB

Monitoring Year: 5 of 5

Sheet: 1 of 3

EROSION

STA. 10+00 - 22+48

Sheet:

2 of 3

		Table 5a. Visu Hoppers Creek-Melton	ual Stream Morph 1 Farm Stream Re	ology Stability storation Proje	Assessment ct: Project No. 9	2251				
Reach ID		South Fork Hoppers Creek Reach 1			~					
Assessed Length	n (LF)	783								
Major Channel Category	Channel Sub- Category	Metric	Number Stable, Performing as Intended	Total Number per As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Veg.	Footage with Stabilizing Woody Veg.	Adjusted % for Stabilizing Woody Veg.
	1 Vartical Stability	1. Aggradation			0	0	100%			
	1. vertical Stability	2. Degradation			0	0	100%			
	2. Riffle Condition	1. Texture/Substrate	6	6			100%			
1. Bed	3. Meander Pool	1. Depth	13	13			100%			
	Condition	2. Length	8	8			100%			
	4 Thelmog position	1. Thalweg centering at upstream of meander bend (Run)	8	8			100%			
	4. Thatweg position	2. Thalweg centering at downstream of meander (Glide)	7	7			100%			
	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			3	52	97%	0	0	97%
2. Bank	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely			1	20	99%	0	0	99%
Reach ID Assessed Length Major Channel Category 1. Bed 2. Bank 3. Engineering Structures	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
			•	Totals	4	72	95%	0	0	95%
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs	20	24			83%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	10	11			91%			
3. Engineering Structures	2a. Piping	Structures lacking any substantial flow underneath sills or arms	9	9			100%			
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%	13	13			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth	11	11			100%			

		Table 5b. Visu Hoppers Creek-Melton	ial Stream Morph Farm Stream Res	ology Stability A storation Projec	Assessment et: Project No. 9	02251				
Reach ID		South Fork Hoppers Creek Reach 2								
Assessed Length	(LF)	445								
Major Channel Category	Channel Sub- Category	Metric	Number Stable, Performing as Intended	Total Number per As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Veg.	Footage with Stabilizing Woody Veg.	Adjusted % for Stabilizing Woody Veg.
	1 Vortical Stability	1. Aggradation			0	0	100%			•
	1. Vertical Stability	2. Degradation			0	0	100%			
	2. Riffle Condition	1. Texture/Substrate	3	3			100%			
1. Bed	3. Meander Pool	1. Depth	10	10			100%			
	Condition	2. Length	3	3			100%			
	1 Thelwag position	1. Thalweg centering at upstream of meander bend (Run)	3	3			100%			
	4. Thatweg position	2. Thalweg centering at downstream of meander (Glide)	4	4			100%			
	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	100%
Reach ID Assessed Length ( Major Channel Category 1. Bed 2. Bank 3. Engineering Structures	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely			3	39	96%	0	0	96%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
				Totals	3	39	96%	0	0	96%
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs	18	19			95%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	10	10			100%			
3. Engineering Structures	2a. Piping	Structures lacking any substantial flow underneath sills or arms	8	8			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%	10	10			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth	14	14			100%	1		

		Table 5c. Visu Hoppers Creek-Melton	al Stream Morph Farm Stream Re	ology Stability storation Proje	Assessment ct: Project No. 9	2251				
Reach ID		UT1 Reach B		<u>_</u>						
Assessed Length	n (LF)	1065								
Major Channel Category	Channel Sub- Category	Metric	Number Stable, Performing as Intended	Total Number per As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Veg.	Footage with Stabilizing Woody Veg.	Adjusted % for Stabilizing Woody Veg.
	1 Vertical Stability	1. Aggradation			0	0	100%			
	1. Vertical Stability	2. Degradation			0	0	100%			
	2. Riffle Condition	1. Texture/Substrate	12	12			100%			
1. Bed	3. Meander Pool	1. Depth	26	26			100%	-		
	Condition	2. Length	16	16			100%	+		
	4. Thalweg position	1. Thalweg centering at upstream of meander bend (Run)	16	16			100%			
		2. Thalweg centering at downstream of meander (Glide)	16	16			100%			
						-			-	1
	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	100%
2. Bank	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
				Totals	0	0	100%	0	0	100%
		-								
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs	38	38			100%			
2	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	22	22			100%			
3. Engineering	2a. Piping	Structures lacking any substantial flow underneath sills or arms	10	10			100%	]		
Suuciures	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%	16	16			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth	10	10			100%	<u> </u>		

		Table 5d. Visu Hoppers Creek-Melton	ial Stream Morph Farm Stream Res	ology Stability A storation Projec	Assessment t: Project No. 9	2251				
Reach ID		UT2 (Reaches A and B)		storation reget						
Assessed Length	(LF)	1197								
Major Channel Category	Channel Sub- Category	Metric	Number Stable, Performing as Intended	Total Number per As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Veg.	Footage with Stabilizing Woody Veg.	Adjusted % for Stabilizing Woody Veg.
	1 Vantiaal Stability	1. Aggradation			0	0	100%		•	
	1. Vertical Stability	2. Degradation			0	0	100%	]		
	2. Riffle Condition	1. Texture/Substrate	5	5			100%			
1. Bed	3. Meander Pool	1. Depth	3	5			60%			
	Condition	2. Length	N/A	N/A			N/A			
	4. Thalweg position	1. Thalweg centering at upstream of meander bend (Run)	5	5			100%			
		2. Thalweg centering at downstream of meander (Glide)	4	4			100%			
	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			1	17	99%	1	15	100%
2. Bank	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely		Ī	0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
	Totals				1	17	99%	1	15	100%
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs	10	10			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	5	5			100%	]		
3. Engineering Structures	2a. Piping	Structures lacking any substantial flow underneath sills or arms	4	5			80%	1		
	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%	5	5			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth	3	5			60%	1		

Table 5e. Stream Problem Areas           Honners Creek-Melton Farm Stream Restoration Project: Project No. 92251							
South Fork Hoppers Creek (SFHC) Reach 1							
Feature Issue Station No.		Suspected Cause	Photo Number*				
Bank Scour	14+35 to 14+57	Scour eroding the right bank immediately downstream of log sill invert/right bank tie-in. Appears to be a localized area of high near bank stress caused by flow (velocity vector) directed at the left bank by log sill orientation.	SPA1-2				
Undercut Banks & Engineering structures - Rootwad & Log Sill Failure	16+12 to 16+32	Rootwad failure and undercut banks along the left bank immediately downstream of log sill invert/left bank tie-in. Appears to be caused by bank scour upstream and beneath the rootwad resulting from flow (velocity vector) directed at the left bank by log sill orientation which eventually undermined the rootwad and the log sill, to where each has separated from the left bank. The root was has slumped into the channel and the log sill had separated and is under water.	SPA2-1 & 5-3				
Bank Scour & Engineering Structures - Rootwad and Log Sill Failure	18+30 to 18+45	Localized scour along the left bank behind root wads is causing the root wads to separate from the bank and has compromised the log sill tie-in.	SPA5-4 & 5-7				
Bank Scour	18+60 to 18+75	Localized scour along the left bank diverting water behind bank toe and discharge downstream.	SPA5-8				
	SFHC Reach 2						
Feature Issue	Station No.	Suspected Cause	Photo Number				
Undercut Banks & Engineering structures - Rootwad & Log Sill Failure	20+20 to 20+40	Rootwad failure and undercut banks along the left bank immediately downstream of log sill invert/left bank tie-in. Appears to be caused by bank scour upstream and beneath the rootwad resulting from flow (velocity vector) directed at the left bank by log sill orientation which eventually undermined the rootwad and the log sill. The root wad and the sill's header log are still tied-in to the bank; however, it appears that the sill's header and footer have separated. Currently the header log is suspended across the channel above the surface water elevation.	SPA4-1 & 5-5				
Undercut Banks 20+45		Undercutting of right bank between root wads immediately downstream of compromised log sill. Appears to be a localized area of high near bank stress caused by flow (velocity vector) directed at the right bank.	SPA5-6				
Undercut Bank & Engineering structures - Rootwad Failure		Rootwad failure along right bank due to undercutting along bank. Appears to be caused by high near bank stress caused by flood flow stream energy vectors being directed at bank.	SPA4-2				

Table 5e cont. Stream Problem Areas Hoppers Creek-Melton Farm Stream Restoration Project: Project No. 92251							
South Fork Hoppers Creek (SFHC) Reach 1							
Feature Issue	Station No.	Suspected Cause	Photo Number*				
UT2 Reach A							
Feature Issue	Station No.	Suspected Cause	Photo Number				
Bank Scour	12+36.50 to 12+53.50	Left bank scour on outside bend. Appears to be caused by high near bank stress during bankfull storm events.	SPA4-3				
Engineered Structure/Aggradation	12+92	Step pool filling with sediment. Most likely to be from upstream sediment supply moving through the system.	SPA5-1				
Piping	13+40	Flow piping within riffle cascade and around downstream log sill due to possible tear in filter fabric or lack of sealing from re-sorting of alluvial material and silt.	SPA1-5				
Engineered Structure/Aggradation	13+42	Step pool filling with sediment. Most likely to be from upstream sediment supply moving through the system.	SPA5-2				
Ephemeral Drainage (near upstream extents of UT2)**							
Feature Issue	Station No.	Suspected Cause	Photo Number				
Bed Scour/Degradation	Riffle cascade downstream of second boulder sill	Scour of riffle cascade from large storm events over time has eroded the channel bed, depositing the coarse riffle substrate downstream, and exposed the underlying filter fabric.	SPA1-6				
Bank Scour & Engineering Structures - Boulder Sill	Fourth boulder sill	Scour along right bank boulder tie-in which appears to be caused by high near bank stress during storm events. Erosion has led the boulder tie-in to dislodge from the bank and may lead to further structure failure.	SPA5-9 & SPA5- 10				
Bank Scour	First boulder sill	Scour along right bank boulder tie-in which appears to be caused by high near bank stress during storm events.	SPA5-11				
*Note: The first digit in th	he Photo Number co	lumn references the monitoring year and the second digit references	the problem area				
Engineered Structure/Aggradation Feature Issue Bed Scour/Degradation Bank Scour & Engineering Structures - Boulder Sill Bank Scour *Note: The first digit in tl	13+42         Ephemera         Station No.         Riffle cascade         downstream of         second boulder         sill         Fourth boulder sill         First boulder sill         he Photo Number colspan="2">colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Station No.         Riffle cascade         downstream of         second boulder         Sill         Fourth boulder sill         he Photo Number colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"         Fourth boulder sill         Photo Number colspan="2"	of alluvial material and silt.         Step pool filling with sediment. Most likely to be from upstread sediment supply moving through the system.         I Drainage (near upstream extents of UT2)**         Suspected Cause         Scour of riffle cascade from large storm events over time has eroded the channel bed, depositing the coarse riffle substrate downstream, and exposed the underlying filter fabric.         Scour along right bank boulder tie-in which appears to be caused high near bank stress during storm events. Erosion has led th boulder tie-in to dislodge from the bank and may lead to furthe structure failure.         Scour along right bank boulder tie-in which appears to be caused high near bank stress during storm events.         Scour along right bank boulder tie-in which appears to be caused high near bank stress during storm events.         Scour along right bank boulder tie-in which appears to be caused high near bank stress during storm events.         Scour along right bank boulder tie-in which appears to be caused high near bank stress during storm events.	d by e er d by				

Reach ID	SFHC Reaches 1 and 2; UT1 Reach B					
Planted Acreage	4.3					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage
1. Bare Areas	Very limited cover of both woody and herbaceous material.	0.1 acres	NA	0	0.15	3.4%
2. Low Stem Density Areas	Woody stem densities clearly below target levels based on MY3, 4, or 5 stem count criteria.	0.1 acres NA		0	0.00	0.0%
			Total	0	0.15	3.4%
3. Areas of Poor Growth Rates or Vigor	Areas with woody stems of a size class that are obviously small given the monitoring year.	0.25 acres	NA	0	0.00	0.0%
	Cumulative Total				0.15	3.4%
Easement Acreage	8.6					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Easement Acreage
4. Invasive Areas of Concern	Areas or points (if too small to render as polygons at map scale).	1000 SF	NA	1	0.03	0.3%
	-				-	-
5. Easement Encroachment Areas	Areas or points (if too small to render as polygons at map scale).	none	NA	3	0.05	0.6%

### Table 6a. Vegetation Condition Assessment Hoppers Creek-Melton Farm Stream Restoration Project: Project No. 92251

MICHAEL BAKER ENGINEERING, INC., DMS PROJECT NO. 92251 SOUTH FORK HOPPERS CREEK - MELTON CREEK STREAM RESTORATION PROJECT YEAR 5 MONITORING REPORT - 2017, MONITORING YEAR 5 OF 5
Reach ID	UT2 Reaches A and B	0	U			
Planted Acreage	1.4					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage
1. Bare Areas	Very limited cover of both woody and herbaceous material.	0.1 acres	NA	0	0.00	0.0%
2. Low Stem Density Areas	Woody stem densities clearly below target levels based on MY3, 4, or 5 stem count criteria.	0.1 acres	NA	0	0.00	0.0%
			Total	0	0	0.0%
3. Areas of Poor Growth Rates or Vigor	Areas with woody stems of a size class that are obviously small given the monitoring year.	0.25 acres	NA	0	0.00	0.0%
		Cun	nulative Total	0	0	0.0%
Easement Acreage	1.5					-
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Easement Acreage
4. Invasive Areas of Concern	Areas or points (if too small to render as polygons at map scale).	1000 SF	See Figure	2	0.06	4.0%
5. Easement Encroachment Areas	Areas or points (if too small to render as polygons at map scale).	none	See Figure	0	0.00	0.0%

## Table 6b. Vegetation Condition Assessment Honners Creek-Melton Farm Stream Restoration Project: Project No. 92251

		UT1 Reach B								
Feature Issue	Station No.	Suspected Cause	Photo Number							
Invasive/Exotic Populations	See Plan View Figure	Rosa multiflora and Lonicera japonica : persisting after treatment	VPA2-4							
UT2										
<b>Feature Issue</b>	Station No.	Suspected Cause	Photo Number							
Invasive/Exotic	See Plan View Figure	Rosa multiflora and Lonicera japonica : persisting after treatment.	VPA4-3							
Populations		Lonicera japonica: persisting after treatment.	VPA4-5							
*Note: The first digit in t	Note: The first digit in the Photo Number column references the monitoring year and the second digit references the problem area or									

# Table 6c. Vegetation Problem AreasHoppers Creek-Melton Farm Stream Restoration Project: Project No. 92251

South Fork Hoppers Creek (SFHC) Stream Station Photos

#### **SOUTH FORK HOPPERS CREEK – Reach 1**



PID 1– Constructed riffle (5/25/16)



PID 3 – Log vane in constructed pool (5/25/16)



PID 5 – Constructed riffle (5/25/16)



PID 2 – Constructed riffle (5/25/16)



PID 4 – Constructed riffle (5/25/16)



PID 6 - Log sills and root wad (5/25/16)



PID 7 – Constructed riffle (5/25/16)



PID 9 – Constructed riffle root wad (5/25/16)



PID 8 – Log sills & root wad (5/25/16)



PID 10 – Confluence of UT1 (5/25/16)



PID 11 – Constructed riffle root wad (5/25/16)

#### **SOUTH FORK HOPPERS CREEK – Reach 2**



PID 12 – Double drop cross vane below crossing (5/16/16)



PID 13 – Log sills & root wad (5/25/16)



PID 14 – Log sills & root wad (5/25/16)



PID 15 – Log Vane (5/25/16)



PID 16 – Log vane & matted bank (5/25/16)

#### UT1 – Reach B



P1D 1– Constructed riffle (5/25/16)



PID 2 – Constructed riffle (5/25/16)



PID 3 – Constructed riffle (5/25/16)



PID 4 – Constructed riffle (5/25/16)



PID 5 – Constructed riffle (5/25/16)



PID 6 – Log sills (5/25/16)



PID 7 – Constructed riffle (5/25/16)



PID 8 – Constructed riffle (5/25/16)



PID 9 – Ephemeral pool in right floodplain (5/25/16)



PID 10 – Log sills (5/25/16)



PID 11 - Constructed riffle (5/25/16)



PID 12 – Ephemeral pool in right floodplain (5/25/16)



PID 13 – Constructed riffle (5/25/16)



PID 14 – Log sill (5/25/16)



PID 15 – Constructed riffle below stream crossing (5/25/16)



PID 16 - Constructed riffle (5/25/16)



PID 17 – Log sills (5/25/16)



PID 18 – Constructed riffle (5/25/16)



PID 19 – Constructed riffle (5/25/16)

UT2



PID 1 – Constructed riffle & log sill (5/16/16)



PID 2 – Constructed riffles & log sills (5/25/16)



PID 3 – Stream crossing (5/25/16)

Hoppers Creek – Melton Farm Stream Problem Area (SPA) Photos

#### **SOUTH FORK HOPPERS CREEK – Reach 1**



SPA1-2 -Right bank scour (5/16/16)



SPA2-1 – Bank scour along left bank has led to erosion around root wads and log sill causing structure failure (5/16/16)



SPA 5-3 – Log sill has slipped out of place and is under water due to bank scour of SPA2-1 (5/16/16)



SPA5-4 – Bank scour along left bank behind root wads (5/16/16)



SPA 5-7 – Bank scour from SPA5-4 has led to water to be diverted behind the bank toe and discharging downstream (10/19/16)

#### SOUTH FORK HOPPERS CREEK – Reach 2



SPA4-1 Undercutting bank along left bank has led to root wad failure



SPA4-2 – Root wad failure along right bank due to undercutting along bank



SPA5-5 – Log sill has been compromised due to bank scour on left bank from SPA 4-2 (5/16/16)



SPA5-6 – Undercut bank causing erosion around root wad (5/16/16)

UT1



Fence line down from logging activity located outside but adjacent to easement





SPA1-5 – Piping within riffle cascade around log sill



SPA4-3 – Small area of bank left bank erosion.



SPA5-1 –Pool below log sill is filling with sediment (5/16/16)



SPA5-2 – Pool below log sill is filling with sediment (5/16/16)

#### EPHEMERAL DRAINAGE



SPA1-6 – Ephemeral drainage channel bed erosion (5/16/16)



SPA5-11 – Scour around boulder tie-in on first boulder sill of ephemeral drainage channel (10/19/16)



SPA5-9 & SPA5-10 – Scour and loss of structure integrity on boulder tie-in on fourth boulder sill of ephemeral drainage channel (10/19/16)

South Fork Hoppers Creek (SFHC) Vegetation Problem Area (VPA) Photos UT2



VPA4-3 – Multi-flora rose and Japanese honeysuckle UT1B



VPA4-5 – Japanese honeysuckle in left floodplain



VPA2-4 – Multi-flora rose and Japanese honeysuckle

### **APPENDIX C**

### **VEGETATION PLOT DATA**

Table 7. Vegetation Plot Criteria AttainmentSouth Fork Hoppers Creek - Melton Farm Restoration Project: DMS Project No. 92251										
Vegetation Plot ID	etation Plot IDVegetation Survival Threshold Met?Planted/Total Stem Count									
13	Y	769/1578								
14	Y	890/1457								
15	Y	445/769								
16	Y	324/405								
17	Y	607/607								
18	Y	526/526	507/067							
19	Y	445/445	38//80/							
20	Y	567/567								
21	Y	890/890								
22	Y	526/809								
23	Y	607/1862								
WLP1	Y	445/486								
Note: *Planted/ stems at the time including volunt	Note: *Planted/Total Stem Count reflects the changes in stem density based on the density of stems at the time of the As-Built Survey (Planted) and the current total density of planted stems including volunteers (Total).									

Table 8. CVS Vegetation Plot Metadata								
	South Fork Hoppers Creek - Melton Farm Restoration Project: DMS Project No. 92251							
Report Prepared By	Kristi Suggs							
Date Prepared	11/25/2016 10:39							
Database name	S.ForkHoppers 92251_MY2-5_cvs-eep-entrytool-v2.3.1_2016_rwm.mdb							
Database location	C:\My Documents\Baker\CVS\S.ForkHoppers							
Computer name	CHABLKSUGGS							
File size	48009216							
DESCRIPTION OF WORKSHEETS IN THIS	S DOCUMENT							
Metadata	Description of database file, the report worksheets, and a summary of project(s) and project data.							
Proj, planted	Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.							
Proj, total stems	Each project is listed with its TOTAL stems per acre, for each year. This includes all planted stems and all natural/volunteer stems.							
Plots	List of plots surveyed with location and summary data (live stems, dead stems, missing, etc.).							
Vigor	Frequency distribution of vigor classes for stems for all plots.							
Vigor by Spp	Frequency distribution of vigor classes listed by species.							
Damage	List of most frequent damage classes with number of occurrences and percent of total stems impacted by each.							
Damage by Spp	Damage values tallied by type for each species.							
Damage by Plot	Damage values tallied by type for each plot.							
Planted Stems by Plot and Spp	A matrix of the count of PLANTED living stems of each species for each plot; dead and missing stems are excluded.							
PROJECT SUMMARY								
Project Code	92251							
Project Name	South Fork Hoppers Creek							
Description	This mitigation project consists of 4,621 LF of stream restoration and preservation efforts on South Fork Hoppers Creek at the Melton Farm.							
River Basin	Catawba							
Length(ft)	3550							
Stream-to-edge width (ft)	120							
Area (sq m)	40873.25							
Required Plots (calculated)	11							
Sampled Plots	12							

									South	FOR	пор	bers (	леек	- Me	ton F	arm	Restor	ration	Proje	ect: D		roje	ct No.	. 9225	51													
												C	urrent	Data	(MY5	5 2016	)												-		1	Annual M	Means					
Tree Species	Common Name	Туре	Plo	t 13	Plot	: 14	Plo	t 15	Plot	: 16	Plot	17	Plot	18	Plot	:19	Plot	20	Plot 2	21	Plot 2	22	Plot	23	Plot	WLP1	Curren	nt Mean	AB (	2011)	MY	<u>1 (2012)</u>	) MY2	2 (2013) T	) MY3	(2014)	/ MY4 (20	015)
A	Ded Marile	Tree	Р	1	Р	1	Р	1	Р	1	Р	1	P 2	2	Р	1	Р	1	Р	1	Р	1	Р	1	P	1	P 2.5	2.5	P	1	P		P	1	P 2			
Acer rubrum		Tree					4	4	2	2			3	3									0	0	4	4	3.5	3.5			_	1	0	0	2	3	4	4
Alnus serrulata	Hazel Alder	Tree			1	1	4	4	3	3	2	2	1	1	1	1	-	-	_	2	1	1	8	8	1	1	3.4	3.4	_		2	1	0	0	3	3	3	3
Betula nigra	River Birch	Tree			1	l			I	I	3	3	2	2	1	I	2	2	2	2	1	1	2	2			2	2	2	3	3	2	2	2	3	3	2	2
Carpinus caroliniana	American hornbean	n I ree	-	-															_	_			I	I			1	l		<u> </u>		$\vdash$					+	
Celtis laevigata	Sugarberry	Tree	5	5															2	2							4	4	1	1	1	2	1	1	3	3	3	3
Cornus amomum	Silky Dogwood	Shrub																			1	1	1	1			1	1				<u> </u>	_		1	1	1	1
Diospyros virginiana	Persimmon	Tree	7	7	18	18	1	1			1	1			1	1	3	3	4	4	1	1					5	5	1	1	1	4	1	1	4	4	5	5
Fraxinus pennsylvanica	Green Ash	Tree			1	1	1	1	2	2	7	7	1	1	3	3	2	2	4	4	3	3					3	3	2	3	3	3	2	3	3	3	3	3
Juglans nigra	Black Walnut	Tree			2	2											2	2									2	2	2	2	2	3	2	2	3	3	2	2
Liriodendron tulipfera	Tulip Poplar	Tree	7	7							1	1			2	2			1	1	4	4	1	1			3	3	3	3	3	3	3	3	3	3	3	3
Nyssa sylvatica	Blackgum	Tree					1	1			1	1	1	1							3	3					2	2	2	2	2	2	2	2	1	1	1	1
Platanus occidentalis	Sycamore	Tree					2	2	1	1	1	1	2	2	3	3	4	4	3	3			2	2	5	5	3	3	2	3	3	2	2	2	2	2	2	2
Quercus sp.	Oak	Tree																																	1	1	1	1
Quercus falcata	S. Red Oak	Tree									1	1															1	1	3	4	4	2	3	3	2	2	1	1
Quercus palustris	Pin Oak	Tree											2	2					6	6							4	4	3	4	4	2	3	3	2	2	2	2
Quercus phellos	Willow Oak	Tree															1	1							1	1	1	1	3	4	4	2	3	3	1	1	1	1
Quercus rubra	N. Red Oak	Tree																											2	4	4	2	2	2	1	1	1	1
∑ Salix nigra	Black Willow	Tree					1	1					1	1	1	1											1	1							1	1	1	1
Salix sericea	Silky Willow	Tree					1	1	1	1																	1	1	1	1	1	1	0	0			1	1
Ulmus americana	American Elm	Tree																											2	2	2	1	1	1				1
Volunteers											1		I						1	1	1		1					1	1	<u> </u>	1							
Acer rubrum	Red Maple	Tree								1												2		10				4		1		7		10		5		4
Alnus serrulata	Hazel Alder	Tree						5		1												3		10		1		4				2		0				4
Cornus amomum	Silky Dogwood	Shrub				1		-														-						1				<u> </u>				2		1
Betula nigra	River Birch	Tree				1																						1				1		0		1		1
Diospyros virginiana	Persimmon	Tree				1																		1				1	1			10		5		5	+	1
Eraxinus pennsylvanica	Green Ash	Tree				-																1		-				1	1			10		0		5	+	1
Ivolans niora	Black Walnut	Tree																				1						1				<u> </u>		0				<u> </u>
Liriodendron tulinfera	Tulin Ponlar	Tree		20		9																		10				13				5		4		34		13
Platanus occidentalis	Sycamore	Tree		20		,		1																10				15				1	-	2		J.7	+	1
1 iaianas occidentatis Quarcus rubra	N Red Oak	Tree						1																				1				1	_	2	-	2	+	
Quercus rubru Salix sariaga	Silky Willow	Tree				2		r																				2				1	_	0	-	2	+	2
Salix sericea Salix nigna	Plack Willow	Tree				Z		2														1						 1				12	-	7	-		+	1
Saux nigra	DIACK WILLOW			1	1			1	1		1		1		1		1		1		1	1	1			1		1	<u> </u>	<u> </u>		12	<u> </u>	/	_			
	Plo	ot area (ares)	2	1	4	7	7	7	5	5	7	7	0	0	1	(	1	(	7	7		11	1	7	4	1		7	7	7	7			7				
D-Dlautal	5]	Steway (Dlat	3	3	4	/	/	/	3	3	/	/	8	8	6	6	6	6	/	/	0	11	6	1	4	4	6	/	/	/	/	8	6	/	6	6	6	<u>/</u>
P=Planted	0.	Stems/Plot	19	39	22	36	11	19	8	10	15	15	13	13	11	11	14	14	22	22	13	20	15	46	11	12	15	21	19	19	19	29	13	21	13	1/	15 4	22
1=1 otal	Ste	ms Per Acre	769	1578	890	1457	445	/69	324	405	607	60/	526	526	445	445	567	567	890 8	<u>890</u>	526 8	309	607	1862	445	486	587	867	772	772	772	614	540	850	543	668	610 8	<u>390</u>
	Total Stems Per Ac	re (including	15	/8	14:	57	- 76	99	4(	15	60	7	52	6	44	.5	56	7	890	)	809		186	52		486	8	6/	7	72		184		850	6	68	890	1



Veg Plot 13 - 10/19/2016



Veg Plot 14 – 10/19/2016



Veg Plot 15 – 10/19/2016



Veg Plot 16 – 10/19/2016



Veg Plot 17 – 10/19/2016



Veg Plot 18 – 10/19/2016

#### South Fork Hoppers Creek – Melton Farm Restoration Project Year 5 Monitoring – Vegetation Plot Photo Log



Veg Plot 19 – 10/19/2016



Veg Plot 20 – 10/19/2016



Veg Plot 21 – 10/19/2016



Veg Plot 22 – 10/19/2016



Veg Plot 23 - 10/19/2016



Veg Plot WPL1 - 10/19/2016

### **APPENDIX D**

### STREAM SURVEY DATA

### South Fork Hoppers Creek - Reach 1 Permanent Cross Section X5

(Year 5 Monitoring - Oct 2016)





LEFT BANK

**RIGHT BANK** 



### South Fork Hoppers Creek - Reach 1 Permanent Cross Section X6



LEFT BANK

**RIGHT BANK** 



### South Fork Hoppers Creek - Reach 2 Permanent Cross Section X7

(Year 5 Monitoring - October 2016)





LEFT BANK

**RIGHT BANK** 



#### South Fork Hoppers Creek - Reach 2 Permanent Cross Section X8

(Year 5 Monitoring - October 2016)





LEFT BANK

**RIGHT BANK** 



### UT1 Permanent Cross Section X9

(Year 5 Monitoring - October 2016)





**LEFT BANK** 

**RIGHT BANK** 



### UT1 Permanent Cross Section X10

(Year 5 Monitoring - October 2016)



LEFT BANK

**RIGHT BANK** 









Figure 4 Cont. Longitudinal Profiles with Annual Overlays South Fork Hoppers Creek - Melton Farm Restoration Project: DMS Project No. 92251

#### Figure 5a. Riffle Pebble Count Size Class Distribution with Annual Overlays South Fork Hoppers Creek - Melton Farm Restoration Project: DMS Project No. 92251

			100011
		BAKER PROJECT NO.	128244
SITE OR PROJECT:	South Fork He	oppers Creek - Melton Farm Restorat	ion Project
REACH/LOCATION:	Reach 1 - Cro	ss-section 5 (Riffle)	
DATE COLLECTED:	19-Oct-16		
FIELD COLLECTION BY:	KS and RM		
DATA ENTRY BY:	RM		

			PARTICLE CLASS COUNT	Sumr	nary
MATERIAL	PARTICLE	SIZE (mm)	Riffle	Class %	% Cum
SILT/CLAY	Silt / Clay	< .063			0%
	Very Fine	.063125			0%
	Fine	.12525	5	5%	5%
SAND	Medium	.2550	21	21%	26%
	Coarse	.50 - 1.0	4	4%	30%
	Very Coarse	1.0 - 2.0			30%
	Very Fine	2.0 - 2.8			30%
	Very Fine	2.8 - 4.0	2	2%	32%
	Fine	4.0 - 5.6	2	2%	34%
	Fine	5.6 - 8.0	6	6%	40%
	Medium	8.0 - 11.0	6	6%	46%
GRAVEL	Medium	11.0 - 16.0	3	3%	49%
	Coarse	16.0 - 22.6	2	2%	52%
	Coarse	22.6 - 32			52%
	Very Coarse	32 - 45	1	1%	53%
	Very Coarse	45 - 64	5	5%	58%
	Small	64 - 90	9	9%	67%
	Small	90 - 128	10	10%	77%
COBBLE	Large	128 - 180	4	4%	81%
	Large	180 - 256	4	4%	85%
	Small	256 - 362			85%
	Small	362 - 512			85%
BOULDER	Medium	512 - 1024			85%
	Large-Very Large	1024 - 2048			85%
BEDROCK	Bedrock	> 2048	15	15%	100%
	•	Total	99	100%	100%





Cummulative							
Channel materials (mm)							
D ₁₆ =	0.4						
D ₃₅ =	5.8						
D ₅₀ =	17.4						
D ₈₄ =	237.7						
D ₉₅ =	3258.5						
D ₁₀₀ =	> 2048						

#### Figure 5b. Riffle Pebble Count Size Class Distribution with Annual Overlays South Fork Hoppers Creek - Melton Farm Restoration Project: DMS Project No. 92251

	BAKER PROJECT NO. 128244
SITE OR PROJECT:	South Fork Hoppers Creek-Melton Farm Restoration Project
REACH/LOCATION:	Reach 2 - Cross-section 7 (Riffle)
DATE COLLECTED:	10/19/2016
FIELD COLLECTION BY:	KS and RM
DATA ENTRY BY:	RM

			PARTICLE CLASS COUNT	Sumn	nary
MATERIAL	PARTICLE	SIZE (mm)	Riffle	Class %	% Cum
SILT/CLAY	Silt / Clay	< .063			0%
	Very Fine	.063125			0%
	Fine	.12525	3	3%	3%
SAND	Medium	.2550	2	2%	5%
-	Coarse	.50 - 1.0	2	2%	7%
	Very Coarse	1.0 - 2.0			7%
	Very Fine	2.0 - 2.8			7%
	Very Fine	2.8 - 4.0	2	2%	9%
	Fine	4.0 - 5.6	5	5%	14%
	Fine	5.6 - 8.0	5	5%	19%
	Medium	8.0 - 11.0	13	13%	32%
GRAVEL	Medium	11.0 - 16.0	9	9%	41%
	Coarse	16.0 - 22.6	3	3%	44%
	Coarse	22.6 - 32	1	1%	45%
	Very Coarse	32 - 45	10	10%	55%
	Very Coarse	45 - 64	15	15%	70%
	Small	64 - 90	17	17%	87%
	Small	90 - 128	11	11%	98%
COBBLE	Large	128 - 180	1	1%	99%
	Large	180 - 256	1	1%	100%
	Small	256 - 362			100%
	Small	362 - 512			100%
BOULDER	Medium	512 - 1024			100%
	Large-Very Large	1024 - 2048			100%
BEDROCK	Bedrock	> 2048			100%
		Total	100	100%	100%

Cumr	nulative	
Channel mat	erials (mm)	
D ₁₆ =	6.46	
D ₃₅ =	12.46	
D ₅₀ =	37.95	
D ₈₄ =	84.74	
D ₉₅ =	116.28	
D ₁₀₀ =	180 - 256	





#### Figure 5c. Riffle Pebble Count Size Class Distribution with Annual Overlays South Fork Hoppers Creek - Melton Farm Restoration Project: DMS Project No. 92251

			BAKER PROJECT NO.	128244			
SITE OR PRO.	JECT:	South Fork Ho	oppers Creek - Melton Farm Restoration	on Project			
REACH/LOCA	TION:	UT1B - Cross-	-section 9 (Riffle)				
DATE COLLEC	TED:	19-Oct-16					
FIELD COLLEC	CTION BY:	KS and RM					
DATA ENTRY I	BY:	RM					
			PARTICLE CLASS COUNT	Sumr	nary		
MATERIAL	PARTICLE	SIZE (mm)	Riffle	Class %	% Cum		
SILT/CLAY	Silt / Clay	< .063	5	5%	5%		
	Very Fine	.063125			5%		
	Fine	.12525	14	14%	19%		
SAND	Medium	.2550	25	25%	44%		
	Coarse	.50 - 1.0	7	7%	51%		
	Very Coarse	1.0 - 2.0			51%		
	Very Fine	2.0 - 2.8			51%		
	Very Fine	2.8 - 4.0			51%		
	Fine	4.0 - 5.6	3	3%	54%		
	Fine	5.6 - 8.0	1	1%	55%		
	Medium	8.0 - 11.0	5	5%	60%		
GRAVEL	Medium	11.0 - 16.0	8	8%	68%		
	Coarse	16.0 - 22.6	1	1%	69%		
	Coarse	22.6 - 32			69%		
	Very Coarse	32 - 45	2	2%	71%		
	Very Coarse	45 - 64	7	7%	78%		
	Small	64 - 90	13	13%	91%		
	Small	90 - 128	5	5%	96%		
COBBLE	Large	128 - 180	4	4%	100%		
	Large	180 - 256			100%		
	Small	256 - 362			100%		
	Small	362 - 512			100%		
BOULDER	Medium	512 - 1024			100%		
	Large-Very Large	1024 - 2048			100%		
BEDROCK	Bedrock	> 2048			100%		
<u> </u>	L	Total	100	100%	100%		

		Pebble	Count Particle Siz	e Distributio
100%	<b>AB</b> (2010)			
90%	- MY 1 (2012)			
80%	MY 2 (2013)			
70%	-  MY 3 (2014)			
<b></b> 60%	MY 4 (2015)			
<b>u</b> 50%				
<b>b b c b c</b>				
			***	
20%			* * *	
10%				
0%	0.01 0.1	<u> </u>	10	100
			Particle Size (mn	1)





Cummulative													
Channel materials (mm)													
D ₁₆ =	0.2												
D ₃₅ =	0.4												
D ₅₀ =	0.9												
D ₈₄ =	74.9												
D ₉₅ =	119.3												
D ₁₀₀ =	128 - 180												



South Fork Hoppers Creek Reach 1 (783 LF)														-																					
Parameter	USGS Gauge Regional Curve Interval				nterval	Pre-Existing Condition					Reference Reach(es) Data						Reference Reach(es) Data								De	sign			As-built						
Dimension and Substrate - Diffle	Jacob	Norwood	(Ha	irman et al, 1	[999) ⁻ Ea	Min	Mean	Med	Max	SD	n	Min	Mean	Med	s branch Max	SD	n	Min	Mean	Spencer Cree Med	Max	am SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n
BF Width (ff)	61.3	32	5.0	20.0	8.7	7.4	10.5	Ivica	14.4	30	3	IVIIII	8 7	wica	wiax	3D	1	IVIIII	10.7	wied	IVIAN	3D	1	IVIIII	13.2	wicu	wiax	50	1	IVIIII	13.1	wied	IVIAX	3D	1
Floodprone Width (ft)	96.3			20.0		16.8	26.2		33.0		3		163.0				1		60.0				1		50+				8		62.9				1
BF Mean Depth (ft)	47	31	0.7	2.0	12	1.0	12		16		3		12				1		16				1		1.0				ĩ		11				1
BF Max Depth (ft)	5.8					1.7	1.9		2.0		3		2.4				1		2.1				1		1.3				1		1.7				1
BF Cross-sectional Area (ft ² )	290.3	99	6.0	26.0	13.0	7.4	12.5		15.6		3		10.4				1		17.8				1		13.8				1		15.0				1
Width/Depth Ratio	13	10.3				6.1	9.3		14.4		3		7.3				1		5.7				1		13.2				1		11.5				1
Entrenchment Ratio	1.6					2.0	2.6		3.4		3		18.7				1		5.5				1		3.8+				8		4.8				1
Bank Height Ratio	1.3					1.3	2.2		2.6		5+		1.2				1		1.0				1		1.0				1		1.0				1
d50 (mm)							0.7				1		9.5						8.8																
Pattern																																			
Channel Beltwidth (ft)												10			16		4	38.3			40.8		2	54.0			78.0		8	40.0	62.1	62.0	87.0	14.0	7
Radius of Curvature (ft)												13.1			29.6		4	10.9			14.6		5	37.0			53.0		8	34.0	39.9	39.0	47.0	5.4	7
Rc:Bankfull width (ft/ft)												4.4			5.2		3	1.3			1.4		5	2.8			4.0		8	2.6	3.0	3.0	3.6	0.4	7
Meander Wavelength (ft)												38			45		3	46			48		2	130.0			177.0		6	146.0	162.0	158.0	184.0	15.7	6
Meander Width Ratio												1.2			1.8		4	3.4			3.6		2	4.1			5.9		8	3.1	4.7	4.7	6.6	1.1	7
Profile																																			
Riffle Length (ft)																														30.0	36.0	37.0	45.0	6.4	6
Riffle Slope (ft/ft)						0.015	0.025		0.035		15	0.03			0.04		4		0.013				2	0.013			0.0305		6	0.01	0.02	0.02	0.03	0.01	6
Pool Length (ft)																																			
Pool Spacing (ff)						27.0	66.0		161.0		14	35.5			47		3		71				5	82.0			118.0		7	74.0	103.0	100.0	129.0	18.0	7
Pool Max Depth (ft)						2.1	2.2		2.4		3		3.1				1		5.5				1		2.0				9		2.4				1
Pool Volume (ft [*] )																																			
Substrate and Transport Parameters																																			
$R_1\% / R_u\% / P\% / G\% / S\%$																																			
SC% / Sa% / G% / B% / Be%														40 / 11/4																		22 / 46 / 57	/ 100 / 120		
d16 / d35 / d50 / d84 / d95						0.5		<0.2/0.38	/ 0.69 /26 / 6	<b>b</b> /	2			48 / N/A	/ 9.5/ 30 / N/A	1				<0.062/3	/ 8.8 / 42 / 90	,										33/46/5/	/ 100 / 128		
Keach Shear Stress (competency) ID/F						0.5	200.0		0.76		3														0.4										
Stream Power (transport capacity) W/m ²						27.0	200.0		18.8		3														22.0										
Additional Beach Parameters						27.9			40.0		5														22.)										
Drainage Area (SM)	25.7	7.2							0.5						0.2						1.0						0.52						0.52		
Impervious cover estimate (%)	25.7	7.2													0.2												0.52						0.52		
Rosgen Classification	C4	E					G5c						F4						F4						C5						E5/C5				
BE Velocity (fps) ²	3.0	26				3.2	0.00		6.8		3		2.						5.4						3.6						20/00				
BE Discharge (cfs)	1140	254	18.0	160.0	52.4	5.2	50		0.8		3								97.0						50.0										
Valley Length (ff)	1140	234	18.0	100.0	52.4		1016.0												57.0						50.0						619.0				
Channel length (ff)	850						1016.0																								783.0				
Sinuosity	1.06						1 14						1 19						2 30						1.20						1.26				
Water Surface Slope (Channel) (ft/ft)							0.0101						0.0109						0.0047						0.0077										
BF slope (ft/ft)	0.0025	0.0008																																	
Bankfull Floodplain Area (acres)																																			
BEHI VL% / L% / M% / H% / VH% / E%																																			
Channel Stability or Habitat Metric																																			
Biological or Other																																			
1. The rural region curve by Harman, etal. 1999 was used for these parameters.		-	-															-												-					
2. An insufficent amount of water surface data was collected along this reach which	h resulted in no	t being able to acc	curately calculate	e water surface	and bankfull vel	locity.						İ 👘																							
		0	,			V.						ł																							

#### Table 10. Baseline Stream Summary South Fork Hoppers Creek - Melton Farm Restoration Project: DMS Project No. 92251
															South Forl	k Hoppers Cr	eek Reach 2	(445 LF)																		
Parameter		USGS	6 Gauge	Regi	ional Curve I	nterval			Pre-Exist	ing Conditi	on.				Reference	Reach(es) D	ata				Reference F	Reach(es) Da	ta				Des	sion					As-h	milt		
r un uniteter		Jacob	Norwood	(H:	arman et al, 1	1999) ¹			TTC Early	ing contain	<b>511</b>				Sal	's Branch				S	Spencer Cree	ek Downstre	am				50	" <b>"</b> Б"								
Dimension - Riffle				LL	UL	Eq.	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n
	BF Width (ft)	61.3	32	5.3	21.0	9.0	7.4	10.5		14.4		3		8.7				1		10.7				1		14.2				1		13.3				1
	Floodprone Width (ft)	96.3					16.8	26.2		33.0		3		163.0				1		60.0				1		50+				2		62.9				1
	BF Mean Depth (ft)	4.7	3.1	0.75	2	1.2	1.0	1.2		1.6		3		1.2				1		1.6				1		0.9				1		1.0				1
	BF Max Depth (ft)	5.8					1.7			2.0		3		2.4				1		2.1				1		1.2				1		1.5				1
BI	F Cross-sectional Area (ft2)	290.3	99	6.0	27.0	13.7	7.4	12.5		15.6		3		10.4				1		17.8				1		12.7				1		13.5				1
	Width/Depth Ratio	13	10.3				6.1	9.3		14.4		3		7.3				1		5.7				1		15.8				1		13.1				1
	Entrenchment Ratio	1.6					2.0	2.6		3.4		3		18.7				1		5.5				1		3.8+				1		4.7				1
	Bank Height Ratio	1.3					1.3	2.2		2.6		5+		1.2				1		1.0				1		1.0				1		1.0				1
	d50 (mm)							0.7				1		9.5						8.8																
Pattern																																				
	Channel Beltwidth (ft)												10			16		4	38.3			40.8		2	62.0			62.0		3	62.0	62.5	62.5	63.0		2
	Radius of Curvature (ff)												13.1			29.6		4	10.9			14.6		5	45.0			87.0		3	36.0	55.7	62.0	69.0	17 39	3
	Rc Bankfull Width (ft/ft)												4 4			5.2		3	13			14		5	3.2			61		3	2.5	3.9	4 4	49	12	3
	Meander Wavelength (ft)												38			45		3	46			48		2	179.0			313.0		2	178.0	246.5	246.5	315.0		2
	Meander Width Ratio												1.2			1.8		4	3.4			3.6		2	4.4			4 4		3	4.4	4 4	4 4	4 4		2
Profile	inculati main rano												1.2			1.0			5.1			5.0		-						2						-
Tronic	Riffle Length (ft)																														31	37	37	43	6	3
	Riffle Slope (ft/ft)						0.015	0.025		0.035		15	0.03			0.04		4		0.013				2	0.0275			0.0330		3	0.024	0.029	0.028	0.032	0.004	3
	Pool Length (ft)						0.015	0.025		0.055		15	0.05			0.04		4		0.015				2	0.0275			0.0550		5	0.024	0.029	0.028	0.052	0.004	
	Pool Spacing (ft)						27.0	66.0		161.0		14	35.5			47		3		71				5	138.0			176.0		2	02	155	155	218		2
	Pool Max Donth (ft)						27.0	2.2		2.4		2	55.5	2.1		47		1		2.2				1	2.5			2.7		2	12	2.1	155	210		2
	$P = 1 V_{cl} = (0^3)$						2.1	2.2		2.4		5		5.1				1		5.5				1	2.5			2.7		5		2.1				2
	Pool Volume (ff )																																			
Substrate and Transport Paramete	rs																																			
R	1% / Ru% / P% / G% / S%																																			
sc	% / Sa% / G% / B% / Be%																																			
	d16 / d35 / d50 / d84 / d95								<0.2 / 0.38	3/0.69/26/	67				48 / N/A	/ 9.5/ 30 / N/A	A				<0.062/3	/ 8.8 / 42 / 90											7/22.6/36	5/60/90		
Reach Shea	ar Stress (competency) lb/f ²						0.5			0.76		3														0.8										
Max part size (mm) mobilized	at bankfull (Rosgen Curve)							200.0																		175.0										
Stream Power	(transport capacity) W/m ²						27.9			48.8		3														44										
Additional Reach Parameters																																				
	Drainage Area (SM)	25.7	7.2							0.5						0.2						1.0						0.52						0.52		
Imp	pervious cover estimate (%)																																			
	Rosgen Classification	C4	E					G5c						E4						E4						C5						C5				
	BF Velocity (fps) ²	3.9	2.6				3.2			6.8		3								5.4						3.9										
	BF Discharge (cfs)	1140	254	19.0	175.0	55.5		50				3								97.0						50.0										
	Valley Length (ft)							1016.0																								405				
	Channel length (ft)	850						1016.0																								415				
	Sinuosity	1.06						1.14						1.19						2.30						1.10						1.02				
Water Sur	face Slope (Channel) (ft/ft)							0.0101						0.0109						0.0047						0.0016										
	BF Slope (ft/ft)	0.0025	0.0008																																	
Banfi	ull Floodplain Area (Acres)																																			
BEHI VL% / L%	% / M% / H% / VH% / E%																																			
Channel	Stability or Habitat Metric																																			
Chaine	Biological or Other																																			
1. The rural region curve by Harman. etal. 1999	9 was used for these parameters.		•																												(					-
2. An insufficent amount of water surface data	was collected along this reach which	h resulted in no	t being able to acc	urately calculat	te water surface	and bankfull ve	elocity.																													-

### Table 10. Baseline Stream Summary South Fork Hoppers Creek - Melton Farm Restoration Project: DMS Project No. 92251

Table 10. Baseline Stream Summary
South Fork Hoppers Creek - Melton Farm Restoration Project: DMS Project No. 92251

														UT	1B (1,065 LF)	)																		
Parameter	USGS Gauge	Regiona	al Curve Int	erval			Pre-Existin	g Condition	L				Reference   Sal's	Reach(es) D s Branch	ata			I SI	Reference R pencer Cree	each(es) Dat k Downstrea	a am				Desi	ign					As-b	uilt		
Dimension - Riffle		LL	UL	Eq.	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n
BF Width (ft)					3.4	4.6		5.7		2.0		8.7				1		10.7				1		7.0				1		7.0				1
Floodprone Width (ft)					9.8	51.1		92.5		2.0		163.0				1		60.0				1		30+				16		51.0				1
BF Mean Depth (ft)					0.6	0.8		1.0		2.0		1.2				1		1.6				1		0.5				1		0.5				1
BF Max Depth (ft)					1.3	1.4		1.6		2.0		2.4				1		2.1				1		0.8				1		1.1				1
BF Cross-sectional Area (ft2)					3.4	3.5		3.5		2.0		10.4				1		17.8				1		3.6				1		3.7				1
Width/Depth Ratio					3.4	6.5		9.5		2.0		7.3				1		5.7				1		13.8				1		13.3				1
Entrenchment Ratio					2.9	9.5		16.2		2.0		18.7				1		5.5				1		4.3+				1		7.3				1
Bank Height Ratio					1.1	2.0		4.5		5+		1.2				1		1.0				1		1.0				1		1.0				1
d50 (mm)						0.46						9.5						8.8																
Pattern																																		
Channel Beltwidth (ft)											10			16		4	38.3			40.8		2	32.0			59.0		16	28.0	43.5	41.5	57.0	8.9	14
Radius of Curvature (ft)											13.1			29.6		4	10.9			14.6		5	14.0			24.0		16	12.0	19.4	19.0	27.0	4.0	15
Re:Bankfull Width (ft/ft)											4.4			5.2		3	1.3			1.4		5	2.0			3.4		16	1.7	2.8	2.7	3.9	0.6	15
Meander Wavelength (ft)											38			45		3	46			48		2	58.0			134.0		13	76.0	97.9	94.0	120.0	14.1	13
Meander Width Ratio											1.2			1.8		4	3.4			3.6		2	4.6			8.4		16	4.0	6.2	5.9	8.1	1.3	14
Profile																-						-										011		
Riffle Length (ft)																													17.0	27.0	30.0	47.0	8.0	11
Riffle Slope (ft/ft)					0.033	0.127		0 564		19	0.03			0.04		4		0.013				2	0.0198			0.0371		12	0.010	0.030	0.020	0.040	0.009	11
Pool L ength (ff)					0.055	0.127		0.504		15	0.05			0.04				0.015					0.0150			0.0571		12	0.010	0.050	0.020	0.040	0.007	
Pool Spacing (ff)					14.0	52.0		110.0		9	35.5			47		3		71				5	42.0			105.0		15	49	63	69	106	20	14
Pool Max Depth (ft)					13	1.5		1.6		ź	55.5	3.1				1		3.3				1	1.0			2.0		16	47	1.6	0)	100	20	1
Deal Valuma ( $\theta^3$ )					1.5	1.5		1.0		2		5.1				1		5.5				1	1.0			2.0		10		1.0				1
Pool volume (ff )																																		
Substrate and Transport Parameters																																		
R1% / Ru% / P% / G% / S%																																		
SC% / Sa% / G% / B% / Be%																															1 05 ( 05 ( 0			
					0.01		0.1//0.33/	0.46/22/50	5	2			48 / N/A /	9.5/ 30 / N/	A				<0.062/3/	8.8/42/90											1.25/35/4	9 / 80 / 90		
Reach Shear Stress (competency) lb/f ²					0.61			0.77		2														0.4										
Max Part Size (mm) mobilized at bankfull (Rosgen Curve)						200.0																		20.0										
Stream Power (transport capacity) W/m ²					34.5			45.5		2														22.8										
Additional Reach Parameters																																		
Drainage Area (SM)								0.1						0.2						1.0						0.08						0.08		
Impervious cover estimate (acres)																																		
Rosgen Classification						E5						E4						E4						C5						C5				
Bankfull Velocity (fps) ²					4			4.1		2								5.4						4.2				1.0						
BF Discharge (cfs)						14												97.0						14.0										
Valley Length (ft)						822																								816.0				
Channel length (ft)						970																								1035				
Sinuosity						1.18						1.19						2.30						1.60						1.27				
Water Surface Slope (Channel) (ft/ft)						0.0193						0.0109						0.0047						0.0144										
BF slope (ft/ft)																																		
Bankfull Floodplain Area (acres)																																		
BEHI VL% / L% / M% / H% / VH% / E%																																		
Channel Stablibity or Habitat Metric																																		
Biological or Other																																		
1. The rural region curve by Harman, etal. 1999 was used for these parameters.											•																		•					
2. An insufficent amount of water surface data was collected along this reach whi	ich resulted in not	t being able to accur	rately calculate	water surface a	and bankfull velo	ocity.																												

		Tabla 1	10 Cross	soction	Mornhold	or Data	Tabla					
South F	ork Honr	rable 1	ra. Cross z - Meltor	-section Farm R	estoration	n Project	DMS Pr	oiect No	92251			
South	ork nopp	South	Fork Ho	nners Ci	reek Reac	h 1 (783 ]		0]001110.	/2251			
		Cr		ppers Cl	a)	11 (705 )	L1.)	C	ross soati	on 6 (Doc	1)	
		CI	055-50010	ш <u>э (к</u> ш			_	C	1055-50011		<i>n)</i>	
Dimension and substrate	Base	MY1	MY2	MY3	MY4	MY5	Base	MY1	MY2	MY3	MY4	MY5
Based on fixed baseline bankfull elev	ation											
Record Elevation (Datum) Used (ft)	1260.2	1260.2	1260.2	1260.2	1260.2	1260.2	1260.1	1260.1	1260.1	1260.1	1260.1	1260.1
BF Width (ft)	13.1	12.1	12.3	12.2	13.2	12.9	14.6	13.5	13.4	13.4	11.2	11.4
BF Mean Depth (ft)	1.1	1.0	0.9	0.9	1.0	1.1	1.2	1.3	1.3	1.3	1.0	1.2
Width/Depth Ratio	11.5	12.5	13.1	13.5	13.1	11.5	11.8	10.7	10.7	10.7	11.2	9.3
BF Cross-sectional Area (ft ² )	15.0	11.8	11.6	11.0	13.2	14.6	18.0	17.1	16.7	16.8	11.2	14.0
BF Max Depth (ft)	1.7	1.6	1.7	1.5	1.8	1.7	2.4	2.7	2.8	2.7	2.2	2.9
Width of Floodprone Area (ft)	62.9	62.9	62.8	62.8	62.8	62.9	65.9	66.0	66.0	65.9	66.0	62.1
Entrenchment Ratio	4.8	5.2	5.1	5.2	4.8	4.9	N/A	N/A	N/A	N/A	N/A	N/A
Bank Height Ratio	1.0	1.0	1.1	1.0	1.0	1.0	1.0	1.0	1.1	1.0	1.0	1.0
Wetted Perimeter (ft)	15.4	14.1	14.2	14.0	15.2	15.2	17.1	16.0	15.9	15.9	13.2	13.9
Hydraulic Radius (ft)	1.0	0.8	0.8	0.8	0.9	1.0	1.1	1.1	1.1	1.1	0.8	1.0

		South	Fork Ho	ppers Ci	reek Reac	h 2 (445 l	LF)					
		Cr	oss-sectio	n 7 (Riff	le)			C	ross-section	on 8 (Poo	l)	
Dimension and substrate	Base	MY1	MY2	MY3	MY4	MY5	Base	MY1	MY2	MY3	MY4	MY5
Based on fixed baseline bankfull elev	ation											
Record Elevation (Datum) Used (ft)	1255.17	1255.1*	1255.1	1255.1	1255.2	1255.2	1252.9	1252.9	1252.9	1252.9	1252.9	1253.0
BF Width (ft)	13.3	14.1	12.8	12.7	13.4	13.7	17.5	15.2	12.8	13.7	14.2	13.4
BF Mean Depth (ft)	1.0	1.1	1.2	1.2	1.2	1.1	0.9	1.1	1.0	1.0	1.0	1.0
Width/Depth Ratio	13.1	13.3	11.1	10.9	11.2	12.6	19.0	13.9	13.3	13.9	14.7	13.4
BF Cross-sectional Area (ft ² )	13.5	14.8	14.8	14.8	16.0	15.0	16.0	16.6	12.3	13.6	13.7	13.5
BF Max Depth (ft)	1.5	1.7	1.9	1.8	1.9	1.9	2.1	2.5	1.7	1.8	2.0	2.3
Width of Floodprone Area (ft)	62.9	62.9	62.9	62.8	62.9	62.9	71.0	71.1	71.1	71.1	71.1	70.9
Entrenchment Ratio	4.7	4.5	4.9	4.9	4.7	4.6	N/A	N/A	N/A	N/A	N/A	N/A
Bank Height Ratio	1.0	1.0	1.1	1.0	1.0	1.0	1.0	1.0	1.2	1.2	1.0	1.0
Wetted Perimeter (ft)	15.4	16.2	15.1	15.0	15.8	15.9	19.3	17.4	14.7	15.7	16.1	15.4
Hydraulic Radius (ft)	0.9	0.9	1.0	1.0	1.0	0.9	0.8	1.0	0.8	0.9	0.9	0.9

* A lower bankfull elevation datum was used in calulating bankful dimension values for MY1 instead of using the baseline bankfull elevation datum which normalized the data between the two monitoring periods thereby reducing data anomalies and enabled a more accurate representation and comparison of dimension parameters.

** A higher bankfull elevation datum was used in calulating bankful dimension values for MY5 instead of using the baseline bankfull elevation datum which normalized the data between the monitoring periods thereby reducing data anomalies and enabled a more accurate representation and comparison of dimension parameters.

			1	U <b>T1B (1</b> ,	065 LF)							
		Cr	oss-sectio	n 9 (Riff	le)			Cı	oss-sectio	on 10 (Po	ol)	
Dimension and substrate	Base	MY1	MY2	MY3	MY4	MY5	Base	MY1	MY2	MY3	MY4	MY5
Based on fixed baseline bankfull elev	ation											
Record Elevation (Datum) Used (ft)	1258.6	1258.6	1258.6	1258.6	1258.6	1258.8	1258.4	1258.4	1258.4	1258.4	1258.4	1258.44
BF Width (ft)	7.0	5.5	5.4	6.8	7.1	6.1	10.2	9.1	8.9	9.9	11.1	12.7
BF Mean Depth (ft)	0.5	0.5	0.4	0.4	0.4	0.4	0.8	0.6	0.6	0.6	0.6	0.5
Width/Depth Ratio	13.3	11.4	13.6	15.9	17.8	16.1	13.3	16.3	14.5	18.2	19.3	26.2
BF Cross-sectional Area (ft ² )	3.7	2.6	2.2	2.9	2.8	2.3	7.9	5.1	5.5	5.4	6.4	6.2
BF Max Depth (ft)	1.1	0.8	0.8	1.0	1.0	0.8	1.6	1.4	1.6	1.6	1.4	1.7
Width of Floodprone Area (ft)	51.0	51.0	47.5	49.8	51.0	50.9	62.0	62.0	62.0	62.0	62.0	62.1
Entrenchment Ratio	7.3	8.8	8.8	7.3	7.2	8.3	N/A	N/A	N/A	N/A	N/A	N/A
Bank Height Ratio	1.0	1.2	1.2	1.0	1.0	1.0	1.0	1.3	1.1	1.1	1.0	1.0
Wetted Perimeter (ft)	8.1	6.4	6.2	7.7	7.9	6.9	11.8	10.2	10.1	11.0	12.3	13.7
Hydraulic Radius (ft)	0.5	0.4	0.4	0.4	0.4	0.3	0.7	0.5	0.5	0.5	0.5	0.5

MICHAEL BAKER ENGINEERING, INC., DMS PROJECT NO. 92251 SOUTH FORK HOPPERS CREEK - MELTON CREEK STREAM RESTORATION PROJECT YEAR 5 MONITORING REPORT - 2017, MONITORING YEAR 5 OF 5

												South	Fork Hopp	Table ers Creek -	e 11b. Strea Melton Farm	m Reach M 1 Restoratio	orphology on Project: E	OMS Projec	t No. 92251																	
														South F	ork Hoppers	Creek Rea	ch 1 (783 LF	F)																		
Parameter		М	lonitoring Ba	seline (As-b	built)				Ν	4Y-1					МУ	Y-2					МУ	(-3					М	Y-4					MY	¥-5		
Dimension and Substrate - Riffle	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n
BF Width (ft)		13.1				1		12.1				1		12.3				1		12.2				1		13.2				1		12.9				1
Floodprone Width (ft)		62.9				1		62.9				1		62.8				1		62.8				1		62.8				1		62.9				1
BF Mean Depth (ft)		1.1				1		1.0				1		0.9				1		0.9				1		1.0				1		1.1				1
BF Max Depth (ft)		1.7				1		1.6				1		1.7				1		1.5				1		1.8				1		1.7				1
BF Cross-sectional Area (ft ² )		15.0				1		11.8				1		11.6				1		11.0				1		13.2				1		14.6				1
With/Depth Katio  1.5  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1															1																					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$															1																					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$															1																					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$															1																					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																																				
Channel Beltwidth (ft)	40.0	62.1	62.0	87.0	14.0	7																														
Radius of Curvature (ff)	34.0	39.9	39.0	47.0	5.4	2																														
RC:Banktull width (ft/ft)	2.6	3.0	3.0	3.0	0.4																															
Meander Wavelength (ft)	146.0	162.0	158.0	184.0	15./	0 7																														
Meander width Katio	5.1	4./	4./	0.0	1.1	/																														
Piffle Length (ft)	30.0	36.0	37.0	45.0	6.4	6	31	41	37	60	11.34	5	36	42	42	40	1.94	5	34	/13	43	51	5.96	5	27	44	36	70	18.3	6	20	35	30	41	9.0	5
Riffle Slope (ff/ft)	0.01	0.02	0.02	4.5.0	0.01	6	0.02	0.02	0.02	0.03	0.003	5	0.02	0.02	0.02	0.03	0.004	5	0.02	0.02	0.02	0.03	0.004	5	0.01	0.03	0.02	0.05	0.02	6	0.01	0.02	0.02	0.03	0.01	5
Pool Length (ft)	0.01	0.02	0.02	0.05	0.01	0	0.02	0.02	0.02	0.05	0.005		0.02	0.02	0.02	0.05	0.004	5	0.02	0.02	0.02	0.05	0.004		0.01	0.05	0.02	0.05	0.02		0.01	0.02	0.02	0.05	0.01	
Pool Spacing (ft)	74.0	103.0	100.0	129.0	18.0	7	79.0	102	110	127	19.5	5	75	101	106	118	18.4	5	77	102	104	119	15.9	5	51	100	104	130	26.3	6	63	102	98	138	26.0	7
Substrate and Transport Parameters	74.0	105.0	100.0	127.0	10.0	,	17.0	102	110	127	17.5	5	15	101	100	110	10.4	5	,,,	102	104	115	15.9	5	51	100	104	150	20.5	0	05	102	70	150	20.0	· ·
d16 / d35 / d50 / d84 / d95			33/46/5	7 / 100 / 128	3				8 / 73 / 8	9/138/192				5	8 / 67 / 79 4 /	122.9/168	1			14	1/676/82	9 / 128 0 / 17	75.0			0.8/6	69/490/1	60.0/3100	/ 5000			04/55	8/174/237	17/3258.5	>2048	
Reach Shear Stress (competency) lb/f ²																																				
Stream Power (transport capacity) W/m ²																																				
Additional Reach Parameters																																		/		
Drainage Area (SM)				0.52						0.52						0.52						0.52						0.52						0.52		
Rosgen Classification		C4						C3						C3						C3						C4						C4				
BF Velocity (fps)1		3.6						3.6						3.6						3.6						3.6						3.6				
BF Discharge (cfs)		54.1						42.5						41.8						39.6						47.5						52.6				
Valley Length (ft)		619.0						619.0						619.0						619.0						619.0						619.0				
Channel length (ft)		783.0						783.0						783.0						783.0						796.0						792.3				
Sinuosity		1.26						1.26						1.26						1.26						1.29						1.28				
Water Surface Slope (Channel) (ft/ft)														0.01						0.01						0.01						0.01				
BF slope (ft/ft)																																				

MICHAEL BAKER ENGINEERING, INC., DMS PROJECT NO. 92251 SOUTH FORK HOPPERS CREEK - MELTON CREEK STREAM RESTORATION PROJECT YEAR 5 MONITORING REPORT - 2017, MONITORING YEAR 5 OF 5

### South Fork Hoppers Creek Reach 2 (445 LF) Monitoring Baseline (As-built) MY-1 MY-2 MY-3 Parameter Min Mean Med Max SD 1 Mean Med Max SD Min Mean Med Max SD Min Mean Med Max SD Min Dimension and Substrate - Riffle Min BF Width ( 133 14.012.8 12.3 62.9 62.9 62.9 62.8 Floodprone Width (ft) ----------------------------------------------------------------------------------------------------BF Mean Depth (ft -----1.0 ---------------1.1 1.7 ----------1.2 1.9 ---------------1.2 1.8 ----------BF Max Depth (ft -----1.5 ---------------------------------------------------------------------------------------14.8 10.9 4.9 1.0 --------------------14.8 ---------------14.8 ---------------BF Cross-sectional Area (ft2) 13.5 -------------------------11.1 4.9 1.1 13.3 4.5 1.0 Width/Depth Ratio -----13.1 ----------Entrenchment Ratio -----4.7 -----Bank Height Ratio -----1.0 --------------d50 (mm -----------------------------------attern Channel Beltwidth (ff 62.0 36.0 62.5 55.7 62.5 62.0 63.0 17..39 Radius of Curvature (ff) 69.0 Rc:Bankfull Width (ft/ft) 2.5 3.9 4.4 4.9 1.2 Meander Wavelength (ft) Meander Width Ratio 246.5 4.4 178.0 246.5 4.4 315.0 -----44 44 ---ofile Riffle Length (ft) Riffle Slope (ft/ft) Pool Length (ft) 37.0 0.03 29.9 0.02 -----73.0 34 0.03 44 0.03 54 0.03 11.10 0.01 52 0.03 31.0 0.02 37.0 0.03 43.0 0.03 6 38 50 8.6 0.01 32 44 34 44 45 9.18 0.00 11 3 3 0.02 0.03 0.03 0.02 0.03 0.02 0.00 3 0.02 0.03 3 3 3 57 -----92 155 ----3 92 91 155 2 81 72 80 75 81 9.073 3 110 15.9 3 77 218 88 10.78 Pool Spacing (ft ostrate and Transport Parameters d16 / d35 / d50 / d84 / d9 7 / 22.6 / 36 / 60 / 90 36 / 51.8 / 65.4 / 89.4 / 123.4 32.6 / 46.5 / 59.1 / 87.2 / 123.1 28.8 / 48.7 /65.0 / 104.0 / 251.5 Reach Shear Stress (competency) lb/f2 ---------------------------------------------------------------Stream Power (transport capacity) W/m² -------------dditional Reach Parameters Drainage Area (SM ----------0.52 ---------------0.52 ----------0.52 -----0.52 ------------------------------------Rosgen Classification C4 C3 C4 C3 ----------------------------------------------------------------------------------------------------BF Velocity (fps)1 BF Discharge (cfs) 3.9 52.767 3.9 57.681 3.9 57.72 -----3.9 57.72 ------------------------------------------------------------------------------------------------------------------------405 415 1.02 -----------------------------------------------------------------------------------------------------------------------------------------------------------405 415 1.02 0.02 ------------------------------------------------------------Valley Length (ft) ----------405 415 -----405 415 ----------Channel length (ft) -----1.02 0.02 1.02 Sinuosit Water Surface Slope (Channel) (ft/ft) --------------------BF Slope (ft/ft)

Table 11b. Stream Reach Morphology South Fork Hoppers Creek - Melton Farm Restoration Project: DMS Project No. 92251

	МУ	<i>(</i> -4					M	¥-5		
Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n
13.4				1		13.7				1
62.9				1		62.9				1
1.2				1		1.1				1
1.9				1		1.9				1
16.0				1		15.0				1
11.2				1		12.6				1
4.7				1		4.6				1
1.0				1		1.0				1
						38.0				
31	32	45	12.6	5	21	33	34	44	10.0	4
0.03	0.03	0.05	0.01	5	0.02	0.03	0.03	0.05	0.02	4
92	87	137	34.7	4	69	117	103	179	56.0	3
7.4	/ 37.0 / 57.0	0 / 95.0 / 12	5.0			6.5 / 12.	5 / 38.0 / 84.	7 / 116.3 / 1	80 - 256	
		0.52						0.52		
C4						C4				
3.9						3.9				
62.4						58.5				
405						405				
455						454				
1.12						1.12				
0.01						0.01				

															UT1B	(1,065 LF)																				
Parameter		M	onitoring Bas	seline (As-b	uilt)				Ν	4Y-1					М	Y-2					М	Y-3					M	Y-4					М	¥-5		
Dimension and Substrate - Riffle	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n
BF Width (ft)		7.0				1		7.0				1		5.4				1		6.8				1		7.1				1		6.1				1
Floodprone Width (ft)		51.0				1		51.0				1		47.5				1		49.8				1		51.0				1		50.9				1
BF Mean Depth (ft)		0.5				1		0.5				1		0.4				1		0.4				1		0.4				1		0.4				1
BF Max Depth (ft)		1.1				1		1.1				1		0.8				1		1.0				1		1.0				1		0.8				1
BF Cross-sectional Area (ft ² )		3.7				1		3.7				1		2.2				1		2.9				1		2.8				1		2.3				1
Width/Depth Ratio		13.3				1		13.3				1		13.6				1		15.9				1		17.8				1		16.1				1
Entrenchment Ratio		7.3				1		7.3				1		8.8				1		7.3				1		7.2				1		8.3				1
Bank Height Ratio		1.0				1		1.0				1		1.2				1		1.0				1		1.0				1		1.0				1
d50 (mm)																																0.9				
Pattern																																				
Channel Beltwidth (ft)	28.0	43.5	41.5	57.0	8.9	14																														
Radius of Curvature (ft)	12.0	19.4	19.0	27.0	4.0	15																														
Rc:Bankfull Width (ft/ft)	1.7	2.8	2.7	3.9	0.6	15																														
Meander Wavelength (ft)	76.0	97.9	94.0	120.0	14.1	13																														
Meander Width Ratio	4.0	6.2	5.9	8.1	1.3	14																														
Profile																																				
Riffle Length (ft)	17.0	27.0	30.0	47.0	8.0	11	17.0	33	42	53	12.2	7	16	38	43	52	14.34	5	15	39	46	51	14.88	5	9.0	33.0	26.0	68.0	21.9	12	12.9	30.0	29.9	60.0	14.0	10
Riffle Slope (ft/ft)	0.010	0.030	0.020	0.040	0.009	11	0.022	0.024	0.025	0.027	0.002	7	0.019	0.024	0.024	0.029	0.003	5	0.018	0.023	0.024	0.029	0.004	5	0.009	0.023	0.018	0.045	0.013	12	0.012	0.026	0.026	0.035	0.008	10
Pool Length (ft)																																				
Pool Spacing (ft)	49.0	63.0	69.0	106.0	20.0	14.0	51.0	73	67	105	17.4	7	48	76	80	102	20.7	5	50	78	83	102	19.99	5	23	62	56	116	27	12	38	72	68	108	22	14
Substrate and Transport Parameters																																				
d16 / d35 / d50 / d84 / d95			1.25 / 35 /	49 / 80 / 90					32 / 47.3 / 6	60.9 / 96 / 141	.1			2	5.4 / 45.7 / 50	6.9 / 90 / 14	3.4			5.	.6 / 36.4 / 55.	7 / 96.7 / 148	3.1			0.1	2 / 4.7 / 36.0	0 / 73.0 / 125	.0			0.2 / 0	.4 / 0.9 / 74.9	/ 119.3 / 12	8 - 180	
Reach Shear Stress (competency) lb/f ²																																				
Stream Power (transport capacity) W/m ²																																				
Additional Reach Parameters																																		/		
Drainage Area (SM)				0.08						0.08						0.08						0.08						0.08								
Rosgen Classification		C4						C4						C4						C4						C4						C5				
Bankfull Velocity (fps)1		4.2						4.2						4.2						4.2						4.2						4.2				
BF Discharge (cfs)		15.6						15.6						9.2						12.2						11.8						9.7				
Valley Length (ft)		816.0						816.0						816.0						816.0						816.0						816.0				
Channel length (ft)		1035						1035						1035						1035						1052						1070				
Sinuosity		1.27						1.27						1.27						1.27						1.34						1.31				
Water Surface Slope (Channel) (ft/ft)														0.02						0.02						0.02						0.02				
BF slope (ft/ft)																																				

Table 11b. Stream Reach Morphology South Fork Hoppers Creek - Melton Farm Restoration Project: DMS Project No. 92251

# **APPENDIX E**

### HYDROLOGIC DATA

South Fork	Table 12. Verific Hoppers Creek Resto	ation of Bankfull Events oration Project: DMS Pr	oject No. 92251	
Location	Date of Data Collection	Date of Occurence of Bankfull Event	Method of Data Collection	Gage Height (feet)
South Fork Hoppers Creek (Station 15+10)	5/30/2012	Unknown	Crest Gauge	0.55
South Fork Hoppers Creek (Station 15+10)	8/1/2012	Unknown	Crest Gauge	0.10
South Fork Hoppers Creek (Station 15+10)	12/31/2012	Unknown	Crest Gauge	0.55
South Fork Hoppers Creek (Station 15+10)	5/1/2013	Unknown	Crest Gauge	0.10
South Fork Hoppers Creek (Station 15+10)	4/16/2014	Unknown	Crest Gauge	0.60
South Fork Hoppers Creek (Station 15+10)	5/6/2015	Unknown	Crest Gauge	0.25
South Fork Hoppers Creek (Station 15+10)	9/24/2015	Unknown	Crest Gauge	0.25
South Fork Hoppers Creek (Station 15+10)	11/16/2015	Unknown	Crest Gauge	0.20
South Fork Hoppers Creek (Station 15+10)	5/16/2016	Unknown	Crest Gauge	0.08
South Fork Hoppers Creek (Station 15+10)	10/19/2016	Unknown	Crest Gauge	0.15

### Figure 6. Monthly Rainfall Data

South Fork Hoppers Creek-Melton Farm Restoration Project: DMS Project No. 99251



MICHAEL BAKER ENGINEERING, INC., DMS PROJECT NO. 92251 SOUTH FORK HOPPERS CREEK - MELTON CREEK STREAM RESTORATION PROJECT YEAR 5 MONITORING REPORT - 2017, MONITORING YEAR 5 OF 5



MICHAEL BAKER ENGINEERING, INC., DMS PROJECT NO. 92251 SOUTH FORK HOPPERS CREEK - MELTON CREEK STREAM RESTORATION PROJECT YEAR 5 MONITORING REPORT - 2017, MONITORING YEAR 5 OF 5

	South Fo	Table 13. Wo ork Hoppers Cree	etland Gauge Att ek Mitigation Pla	ainment Data n: DMS Project N	lo. 92251										
	Su	mmary of Groun	dwater Gauge Re	sults for MY1-M	¥5										
C	Success C	riteria Achieved/	Max Consecutive	e Days During Gr	owing Season (Pe	rcentage)									
Gauge	Gauge   MY1 (2011)   MY2 (2012)   MY3 (2013)   MY4 (2014)   MY4 (2015)   MY5 (2016)     Vac/25 days   Vac/25 days   Vac/218 days   Vac/27 days   Vac/176 days   Vac/05 days														
Gauge 1   No/10 days (5%)   Yes/25 days (12%)   Yes/218 days (100%)   Yes/27 days (12%)*   Yes/176 days (81%)   Yes/95 days (44%)															
Gauge 2	Yes/218 days (100%)	Yes/218 days (100%)	Yes/218 days (100%)	Yes/47 days (22%)*	Yes/218 days (100%)	Yes/79 days (36%)**									
Gauge 3	Yes/188 days (86%)	Yes/218 days (100%)	Yes/218 days (100%)	Yes/218 days (100%)	Yes/218 days (100%)	Yes/218 days (100%)									
Gauge 4	Yes/200 days (92%)	Yes/218 days (100%)	Yes/218 days (100%)	Yes/218 days (100%)	Yes/218 days (100%)	Yes/79 days (36%)**									
*Gauge 1 and 2	were not working pro	operly during muc	h of the 2014 grov	ving season.		-									
**Gauge 2 and 4	were not working p	roperly during mu	ich of the 2016 gro	wing season.											

South Fork Hoppers Creek (SFHC) Bankfull Photo Documentation

# South Fork Hoppers Creek – Bankfull Photolog



Crest Gauge Photo (5/16/16)

Crest Gauge Photo (10/19/16)